Preferred Language
Articles
/
ijs-7606
Review on Hybrid Swarm Algorithms for Feature Selection
...Show More Authors

    Feature selection represents one of the critical processes in machine learning (ML). The fundamental aim of the problem of feature selection is to maintain performance accuracy while reducing the dimension of feature selection. Different approaches were created for classifying the datasets. In a range of optimization problems, swarming techniques produced better outcomes. At the same time, hybrid algorithms have gotten a lot of attention recently when it comes to solving optimization problems. As a result, this study provides a thorough assessment of the literature on feature selection problems using hybrid swarm algorithms that have been developed over time (2018-2021). Lastly, when compared with current feature selection procedures, the majority of hybrid algorithms enhance classification accuracy.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
The Prediction of COVID 19 Disease Using Feature Selection Techniques
...Show More Authors
Abstract<p>COVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in </p> ... Show More
View Publication Preview PDF
Scopus (19)
Crossref (14)
Scopus Crossref
Publication Date
Sun Mar 04 2018
Journal Name
Iraqi Journal Of Science
Improving Detection Rate of the Network Intrusion Detection System Based on Wrapper Feature Selection Approach
...Show More Authors

Regarding the security of computer systems, the intrusion detection systems (IDSs) are essential components for the detection of attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in real time. A major drawback of the IDS is their inability to provide adequate sensitivity and accuracy, coupled with their failure in processing enormous data. The issue of classification time is greatly reduced with the IDS through feature selection. In this paper, a new feature selection algorithm based on Firefly Algorithm (FA) is proposed. In addition, the naïve bayesian classifier is used to discriminate attack behaviour from normal behaviour in the network tra

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Traitement Du Signal
Optimizing Acoustic Feature Selection for Estimating Speaker Traits: A Novel Threshold-Based Approach
...Show More Authors

View Publication
Clarivate Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
A Hybrid Algorithms Based on the Aizawa Attractor and Rabbit-Lightweight Cipher for Image Encryption
...Show More Authors

     Social media and networks rely heavily on images. Those images should be distributed in a private manner. Image encryption is therefore one of the most crucial components of cyber security. In the present study, an effective image encryption technique is developed that combines the Rabbit Algorithm, a simple algorithm, with the Attractor of Aizawa, a chaotic map. The lightweight encryption algorithm (Rabbit Algorithm), which is a 3D dynamic system, is made more secure by the Attractor of Aizawa. The process separates color images into blocks by first dividing them into bands of red, green, and blue (RGB). The presented approach generates multiple keys, or sequences, based on the initial parameters and conditions, which are

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Nov 01 2019
Journal Name
Civil Engineering Journal
Time-Cost-Quality Trade-off Model for Optimal Pile Type Selection Using Discrete Particle Swarm Optimization Algorithm
...Show More Authors

The cost of pile foundations is part of the super structure cost, and it became necessary to reduce this cost by studying the pile types then decision-making in the selection of the optimal pile type in terms of cost and time of production and quality .So The main objective of this study is to solve the time–cost–quality trade-off (TCQT) problem by finding an optimal pile type with the target of "minimizing" cost and time while "maximizing" quality. There are many types In the world of piles but  in this paper, the researcher proposed five pile types, one of them is not a traditional, and   developed a model for the problem and then employed particle swarm optimization (PSO) algorithm, as one of evolutionary algorithms with t

... Show More
Scopus (9)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Ieee Access
Fuzzy-Based Ensemble Feature Selection for Automated Estimation of Speaker Height and Age Using Vocal Characteristics
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
An Integrated Information Gain with A Black Hole Algorithm for Feature Selection: A Case Study of E-mail Spam Filtering
...Show More Authors

     The current issues in spam email detection systems are directly related to spam email classification's low accuracy and feature selection's high dimensionality. However, in machine learning (ML), feature selection (FS) as a global optimization strategy reduces data redundancy and produces a collection of precise and acceptable outcomes. A black hole algorithm-based FS algorithm is suggested in this paper for reducing the dimensionality of features and improving the accuracy of spam email classification. Each star's features are represented in binary form, with the features being transformed to binary using a sigmoid function. The proposed Binary Black Hole Algorithm (BBH) searches the feature space for the best feature subsets,

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Dec 23 2024
Journal Name
International Journal Of Data And Network Science
Multi-objective of wind-driven optimization as feature selection and clustering to enhance text clustering
...Show More Authors

Text Clustering consists of grouping objects of similar categories. The initial centroids influence operation of the system with the potential to become trapped in local optima. The second issue pertains to the impact of a huge number of features on the determination of optimal initial centroids. The problem of dimensionality may be reduced by feature selection. Therefore, Wind Driven Optimization (WDO) was employed as Feature Selection to reduce the unimportant words from the text. In addition, the current study has integrated a novel clustering optimization technique called the WDO (Wasp Swarm Optimization) to effectively determine the most suitable initial centroids. The result showed the new meta-heuristic which is WDO was employed as t

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Crossref
Publication Date
Thu Apr 01 2021
Journal Name
Computer Methods And Programs In Biomedicine
A hybrid approach based on multiple Eigenvalues selection (MES) for the automated grading of a brain tumor using MRI
...Show More Authors

View Publication
Scopus (35)
Crossref (32)
Scopus Clarivate Crossref
Publication Date
Mon Nov 11 2019
Journal Name
Day 3 Wed, November 13, 2019
Drill Bit Selection Optimization Based on Rate of Penetration: Application of Artificial Neural Networks and Genetic Algorithms
...Show More Authors
Abstract<p>The drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the</p> ... Show More
View Publication
Crossref (6)
Crossref