Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show MoreRA Ali, LK Abood, Int J Sci Res, 2017 - Cited by 2
When soft tissue planning is important, usually, the Magnetic Resonance Imaging (MRI) is a medical imaging technique of selection. In this work, we show a modern method for automated diagnosis depending on a magnetic resonance images classification of the MRI. The presented technique has two main stages; features extraction and classification. We obtained the features corresponding to MRI images implementing Discrete Wavelet Transformation (DWT), inverse and forward, and textural properties, like rotation invariant texture features based on Gabor filtering, and evaluate the meaning of every
... Show MoreLK Abood, RA Ali, M Maliki, International Journal of Science and Research, 2015 - Cited by 2
Optimization is the task of minimizing or maximizing an objective function f(x) parameterized by x. A series of effective numerical optimization methods have become popular for improving the performance and efficiency of other methods characterized by high-quality solutions and high convergence speed. In recent years, there are a lot of interest in hybrid metaheuristics, where more than one method is ideally combined into one new method that has the ability to solve many problems rapidly and efficiently. The basic concept of the proposed method is based on the addition of the acceleration part of the Gravity Search Algorithm (GSA) model in the Firefly Algorithm (FA) model and creating new individuals. Some stan
... Show MoreBefore users store data in the cloud, many security issues must be addressed, as they will have no direct control over the data that has been outsourced to the cloud, particularly personal and sensitive data (health, finance, military, etc.). This article proposes a system based on chaotic maps for private key generation. A hybrid encryption for fast and secure cryptography. In addition to a multi-cloud storage with Pseudonymized file names to preserve user data privacy on the cloud while minimizing data loss. As well as a hash approach to check data integrity. AES in combination with RSA and fragmenting the file is used for the encryption. Integrity is cheeked using SHA-3. The experiments demonstrated that the key generation stra
... Show MoreIn this work, watershed transform method was implemented to detect and extract tumors and abnormalities in MRI brain skull stripped images. An adaptive technique has been proposed to improve the performance of this method.Watershed transform algorithm based on clustering techniques: K-Means and FCM were implemented to reduce the oversegmentation problem. The K-Means and FCM clustered images were utilized as input images to the watershed algorithm as well as of the original image. The relative surface area of the extracted tumor region was calculated for each application. The results showed that watershed trnsform algorithm succeedeed to detect and extract the brain tumor regions very well according to the consult of a specialist doctor a
... Show More