The aim of this paper is to introduce and study the concept of SN-spaces via the notation of simply-open sets as well as to investigate their relationship to other topological spaces and give some of its properties.
The soft sets were known since 1999, and because of their wide applications and their great flexibility to solve the problems, we used these concepts to define new types of soft limit points, that we called soft turning points.Finally, we used these points to define new types of soft separation axioms and we study their properties.
Let R be a commutative ring with identity and let M be a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of semi-essential submodules which introduced by Ali S. Mijbass and Nada K. Abdullah, and we make simple changes to the definition relate with the zero submodule, so we say that a submodule N of an R-module M is called semi-essential, if whenever N ∩ P = (0), then P = (0) for each prime submodule P of M. Various properties of semi-essential submodules are considered.
In this paper we introduce a new class of operators on Hilbert space. We
call the operators in this class, n,m- powers operators. We study this class
of operators and give some of their basic properties.
Exciton model describes the excitation of particles in pre-equilibrium region of nuclear reaction by exciton. In pre-equilibrium region there is a small probability for occurring emission and the number of excitons be the probability of the emission of it possible more is called most probable exciton number MPEN. In this paper the MPEN formula was derived for protons and neutrons separately and so MPEN formula derived with taking into account the non equidistant spacing between the energy states. The MPEN was studied with the mass number where it is noticed the MPEN increases with increasing the mass number. Also, MPEN studied for different isotopes of Al, the MPEN increases with increasing mass number of isotopes. MPEN for neutron is co
... Show MoreBackground: Obesity is imposing a growing threat to world health. The autonomic nervous system (ANS) regulates visceral functions via balance between sympathetic and parasympathetic divisions. In the cardiovascular system (CVS) this non stationary balance results in the fluctuation between intervals of consecutive heart beats, so called heart rate variability (HRV). Obesity is one of the causative co-morbid conditions leading to metabolic and cardiac disorders as it is accompanied with varied combinations of abnormalities in the ANS, one view is that obese people have higher sympathetic tone. HRV measures the effect of autonomic function on the heart alone. Therefore, it could be the most useful method to investigate the
... Show MoreIn this study, we present different methods of estimating fuzzy reliability of a two-parameter Rayleigh distribution via the maximum likelihood estimator, median first-order statistics estimator, quartile estimator, L-moment estimator, and mixed Thompson-type estimator. The mean-square error MSE as a measurement for comparing the considered methods using simulation through different values for the parameters and unalike sample sizes is used. The results of simulation show that the fuzziness values are better than the real values for all sample sizes, as well as the fuzzy reliability at the estimation of the Maximum likelihood Method, and Mixed Thompson Method perform better than the other methods in the sense of MSE, so that
... Show MoreIn this paper, we study the growth of solutions of the second order linear complex differential equations insuring that any nontrivial solutions are of infinite order. It is assumed that the coefficients satisfy the extremal condition for Yang’s inequality and the extremal condition for Denjoy’s conjecture. The other condition is that one of the coefficients itself is a solution of the differential equation .
In this paper, we introduce a new type of functions in bitopological spaces, namely, (1,2)*-proper functions. Also, we study the basic properties and characterizations of these functions . One of the most important of equivalent definitions to the (1,2)*-proper functions is given by using (1,2)*-cluster points of filters . Moreover we define and study (1,2)*-perfect functions and (1,2)*-compact functions in bitopological spaces and we study the relation between (1,2)*-proper functions and each of (1,2)*-closed functions , (1,2)*-perfect functions and (1,2)*-compact functions and we give an example when the converse may not be true .
Let be a ring with identity and let be a left R-module. If is a proper submodule of and , is called --semi regular element in , If there exists a decoposition such that is projective submodule of and . The aim of this paper is to introduce properties of F-J-semi regular module. In particular, its characterizations are given. Furthermore, we introduce the concepts of Jacobson hollow semi regular module and --semiregular module. Finally, many results of Jacobson hollow semi regular module and --semiregular module are presented.
In this paper we tend to describe the notions of intuitionistic fuzzy asly ideal of ring indicated by (I. F.ASLY) ideal and, we will explore some properties and connections about this concept.