In this paper, we introduce a new type of functions in bitopological spaces, namely, (1,2)*-proper functions. Also, we study the basic properties and characterizations of these functions . One of the most important of equivalent definitions to the (1,2)*-proper functions is given by using (1,2)*-cluster points of filters . Moreover we define and study (1,2)*-perfect functions and (1,2)*-compact functions in bitopological spaces and we study the relation between (1,2)*-proper functions and each of (1,2)*-closed functions , (1,2)*-perfect functions and (1,2)*-compact functions and we give an example when the converse may not be true .
In the present paper we introduce and study new classes of soft separation axioms in soft bitopological spaces, namely, soft (1,2)*-omega separation axioms and weak soft (1,2)*-omega separation axioms by using the concept of soft (1,2)*-omega open sets. The equivalent definitions and basic properties of these types of soft separation axioms also have been studied.
In this paper we introduce a lot of concepts in bitopological spaces which are ij-ω-converges to a subset, ij-ω-directed toward a set, ij-w-closed functions, ij-w-rigid set, ij-w-continuous functions and the main concept in this paper is ij-w-perfect functions between bitopological spaces. Several theorems and characterizations concerning these concepts are studied.
In this paper, we introduce and study new types of soft open sets and soft closed
sets in soft bitopological spaces (X,~ ,~ ,E) 1 2 , namely, (1,2)*-maximal soft open
sets, (1,2)*-maximal soft (1,2)*-pre-open sets, semi (1,2)*-maximal soft (1,2)*-preopen
sets, (1,2)*-maximal soft closed sets, (1,2)*-maximal soft (1,2)*-pre-closed
sets, (1,2)*-minimal soft open sets, (1,2)*-minimal soft (1,2)*-pre-open sets, (1,2)*-
minimal soft closed sets, (1,2)*-minimal soft (1,2)*-pre-closed sets, and semi (1,2)*-
minimal soft (1,2)*-pre-closed sets. Also, properties and the relation among these
concepts have been studied.
The aim of this paper is to introduce a new type of proper mappings called semi-p-proper mapping by using semi-p-open sets, which is weaker than the proper mapping. Some properties and characterizations of this type of mappings are given.
In this paper, we introduce and study new classes of soft open sets in soft bitopological spaces called soft (1,2)*-omega open sets and weak forms of soft (1,2)*-omega open sets such as soft (1,2)*-α-ω-open sets, soft (1,2)*-pre-ω-opensets, soft (1,2)*-b-ω-open sets, and soft (1,2)*-β-ω-open sets. Moreover; some basic properties and the relation among these concepts and other concepts also have been studied.
The purpose of this paper is to introduce and study the concepts of fuzzy generalized open sets, fuzzy generalized closed sets, generalized continuous fuzzy proper functions and prove results about these concepts.
We introduce and discus recent type of fibrewise topological spaces, namely fibrewise bitopological spaces, Also, we introduce the concepts of fibrewise closed bitopological spaces, fibrewise open bitopological spaces, fibrewise locally sliceable bitopological spaces and fibrewise locally sectionable bitopological spaces. Furthermore, we state and prove several propositions concerning with these concepts.
In this work involved prepared of several new 1-cyclopentene-1,2-dicarboxylimide linked to oxadiazole and benzothiazole moiety were synthesized by two steps: The first step 2-amino-substituted-1,3,4-oxadiazoles and substituted-2-aminobenzothiazole were reaction with 1-cyclopentene-1,2-dicarboxyl anhydride producing N-( 5- substituted-1,3,4-oxadiazole-2-yl)-1-cyclopentene-1,2-dicarboxyl amic acids and N-(Substitutedbenzothiazole-2-yl)-1-cyclopentene-1,2-dicarboxyl amic acids which in turn were dehydrated in the second step via fusion method to afford he desirable N-(5-substituted-1,3,4-oxadiazole-2-yl)-1-cyclopentene-1,2-dicarboxylimides and N-(Substituted benzothiazole-2-yl)1-cyclopentene-1,2-dicarboxylimides respectively. Struct
... Show MoreIn this research, we introduce and study the concept of fibrewise bitopological spaces. We generalize some fundamental results from fibrewise topology into fibrewise bitopological space. We also introduce the concepts of fibrewise closed bitopological spaces,(resp., open, locally sliceable and locally sectionable). We state and prove several propositions concerning with these concepts. On the other hand, we extend separation axioms of ordinary bitopology into fibrewise setting. The separation axioms we extend are called fibrewise pairwise T_0 spaces, fibrewise pairwise T_1 spaces, fibrewise pairwise R_0 spaces, fibrewise pairwise Hausdorff spaces, fibrewise pairwise functionally Hausdorff spaces, fibrewise pairwise regular spaces, fibrewise
... Show More