Preferred Language
Articles
/
bsj-2980
On the Growth of Solutions of Second Order Linear Complex Differential Equations whose Coefficients Satisfy Certain Conditions

In this paper, we study the growth of solutions of the second order linear complex differential equations  insuring that any nontrivial solutions are of infinite order. It is assumed that the coefficients satisfy the extremal condition for Yang’s inequality and the extremal condition for Denjoy’s conjecture. The other condition is that one of the coefficients itself is a solution of the differential equation .

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jul 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On the Growth of Solutions of Nonhomogeneous Higher order Complex Linear Differential Equations

The nonhomogeneous higher order linear complex differential equation (HOLCDE) with meromorphic (or entire) functions is considered in this paper. The results are obtained by putting some conditions on the coefficients to prove that the hyper order of any nonzero solution of this equation equals the order of one of its coefficients in case the coefficients are meromorphic functions. In this case, the conditions were put are that the lower order of one of the coefficients dominates the maximum of the convergence exponent of the zeros sequence of it, the lower order of both of the other coefficients and the nonhomogeneous part and that the solution has infinite order. Whiles in case the coefficients are entire functions, any nonzero solutio

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Mar 01 2023
Journal Name
Baghdad Science Journal
Traveling Wave Solutions of Fractional Differential Equations Arising in Warm Plasma

This paper aims to study the fractional differential systems arising in warm plasma, which exhibits traveling wave-type solutions. Time-fractional Korteweg-De Vries (KdV) and time-fractional Kawahara equations are used to analyze cold collision-free plasma, which exhibits magnet-acoustic waves and shock wave formation respectively. The decomposition method is used to solve the proposed equations. Also, the convergence and uniqueness of the obtained solution are discussed. To illuminate the effectiveness of the presented method, the solutions of these equations are obtained and compared with the exact solution. Furthermore, solutions are obtained for different values of time-fractional order and represented graphically.

Scopus (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Numerical Solutions for the Nonlinear PDEs of Fractional Order by Using a New Double Integral Transform with Variational Iteration Method

This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Sep 01 2021
Journal Name
Baghdad Science Journal
On Comparison Study between Double Sumudu and Elzaki Linear Transforms Method for Solving Fractional Partial Differential Equations

        In this paper, double Sumudu and double Elzaki transforms methods are used to compute the numerical solutions for some types of fractional order partial differential equations with constant coefficients and explaining the efficiently of the method by illustrating some numerical examples that are computed by using  Mathcad 15.and graphic in Matlab R2015a.

Scopus (4)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
Oscillations of First Order Linear Delay Differential Equations with positive and negative coefficients

Oscillation criteria are obtained for all solutions of the first-order linear delay differential equations with positive and negative coefficients where we established some sufficient conditions so that every solution of (1.1) oscillate. This paper generalized the results in [11]. Some examples are considered to illustrate our main results.

Crossref
View Publication Preview PDF
Publication Date
Mon May 11 2020
Journal Name
Baghdad Science Journal
Oscillation Criteria for Solutions of Neutral Differential Equations of Impulses Effect with Positive and Negative Coefficients: eventually positive solutions and differential inequalities

In this paper, some necessary and sufficient conditions are obtained to ensure the oscillatory of all solutions of the first order impulsive neutral differential equations. Also, some results in the references have been improved and generalized. New lemmas are established to demonstrate the oscillation property. Special impulsive conditions associated with neutral differential equation are submitted. Some examples are given to illustrate the obtained results.

Scopus (5)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
On Blow-up Solutions of A Parabolic System Coupled in Both Equations and Boundary Conditions

This paper is concerned with the blow-up solutions of a system of two reaction-diffusion equations coupled in both equations and boundary conditions. In order to understand how the reaction terms and the boundary terms affect the blow-up properties, the lower and upper blow-up rate estimates are derived. Moreover, the blow-up set under some restricted assumptions is studied.

Scopus (10)
Crossref (2)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Sep 06 2015
Journal Name
Baghdad Science Journal
Oscillations of Third Order Half Linear Neutral Differential Equations

In this paper the oscillation criterion was investigated for all solutions of the third-order half linear neutral differential equations. Some necessary and sufficient conditions are established for every solution of (a(t)[(x(t)±p(t)x(?(t) ) )^'' ]^? )^'+q(t) x^? (?(t) )=0, t?t_0, to be oscillatory. Examples are given to illustrate our main results.

Crossref
View Publication Preview PDF
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
The effect of the Coefficient Function on the Solution Behavior for the Second-Order Complex Differential Equation

The purpose of this research paper is to present the second-order homogeneous complex differential equation   , where   , which is defined on the certain complex domain depends on solution behavior. In order to demonstrate  the relationship between the solution of the second-order of the complex differential equation and its coefficient of function, by studying the solution in certain cases: a meromorphic function, a coefficient of function, and if the solution is considered to be a transformation with another complex solution. In addition, the solution has been provided as a power series with some  applications.

 

Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Oct 30 2021
Journal Name
Iraqi Journal Of Science
Oscillation Criteria of Solutions of Third Order Neutral Integro-Differential Equations

      Some necessary and sufficient conditions are obtained that guarantee the oscillation of all solutions of two types of neutral integro-differential equations of third order. The integral is used in the sense of Riemann-Stieltjes. Some examples were included to illustrate the obtained results

Scopus Crossref
View Publication Preview PDF