Preferred Language
Articles
/
ijs-6929
Z-Small Quasi-Dedekind Modules
...Show More Authors

     In this paper, we define and study z-small quasi-Dedekind as a generalization of small quasi-Dedekind modules. A submodule  of -module  is called z-small (  if whenever  , then . Also,  is called a z-small quasi-Dedekind module if for all  implies  . We also describe some of their properties and characterizations. Finally, some examples are given.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun May 01 2022
Journal Name
Journal Of Physics: Conference Series
D_j -Supplemented Modules
...Show More Authors

Scopus
Publication Date
Tue Jan 01 2002
Journal Name
Iraqi Journal Of Science
Special selfgenerator Modules
...Show More Authors

Let R be a commutative ring with identity, and let M be a unitary left R-module. M is called special selfgenerator or weak multiplication module if for each cyclic submodule Ra of M (equivalently, for each submodule N of M) there exists a family {fi} of endomorphism of M such that Ra = ∑_i▒f_i (M) (equivalently N = ∑_i▒f_i (M)). In this paper we introduce a class of modules properly contained in selfgenerator modules called special selfgenerator modules, and we study some of properties of these modules.

Preview PDF
Publication Date
Tue Jan 01 2002
Journal Name
Iraqi Journal Of Science
On Regular Modules
...Show More Authors

Let R be a commutative ring with identity, and let M be a unitary left R-module. M is called Z-regular if every cyclic submodule (equivalently every finitely generated) is projective and direct summand. And a module M is F-regular if every submodule of M is pure. In this paper we study a class of modules lies between Z-regular and F-regular module, we call these modules regular modules.

Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
ON CLS- MODULES
...Show More Authors

Let R be a commutative ring with identity and let M be a unital left R-module.
A.Tercan introduced the following concept.An R-module M is called a CLSmodule
if every y-closed submodule is a direct summand .The main purpose of this
work is to develop the properties of y-closed submodules.

View Publication Preview PDF
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
⊕-J-supplemented modules
...Show More Authors

Scopus (1)
Scopus
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
⊕-Rad -supplemented modules
...Show More Authors

Publication Date
Thu Dec 29 2016
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Fuzzy Distributive Modules
...Show More Authors

  Let R be a commutative ring with unity. In this paper we introduce and study fuzzy distributive modules and fuzzy arithmetical rings as generalizations of (ordinary) distributive modules and arithmetical ring. We give some basic properties about these concepts.  

View Publication Preview PDF
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Coclosed Rickart Modules
...Show More Authors

   Let  be a right module over an arbitrary ring  with identity and  . In this work, the coclosed rickart modules as a generalization of  rickart  modules is given. We say  a module  over   coclosed rickart if for each ,   is a coclosed submodule of  . Basic results over this paper are introduced and connections between these modules and otherwise notions are investigated.

 

View Publication Preview PDF
Crossref
Publication Date
Wed Nov 27 2019
Journal Name
Iraqi Journal Of Science
ON RICKART MODULES
...Show More Authors

Gangyong Lee, S.Tariq Rizvi, and Cosmin S.Roman studied Rickart modules.

The main purpose of this paper is to develop the properties of Rickart modules .

We prove that each injective and prime module is a Rickart module. And we give characterizations of some kind of rings in term of Rickart modules.

View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sun Mar 19 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
2-Regular Modules
...Show More Authors

  In this paper we introduced the concept of 2-pure submodules as a generalization of pure submodules, we study some of its basic properties and by using this concept we define the class of 2-regular modules, where an R-module M is called 2-regular module if every submodule is 2-pure submodule. Many results about this concept are given. 

View Publication Preview PDF