In this paper, a Bayesian analysis is made to estimate the Reliability of two stress-strength model systems. First: the reliability of a one component strengths X under stress Y. Second, reliability of one component strength under three stresses. Where X and Y are independent generalized exponential-Poison random variables with parameters (α,λ,θ) and (β,λ,θ) . The analysis is concerned with and based on doubly type II censored samples using gamma prior under four different loss functions, namely quadratic loss function, weighted loss functions, linear and non-linear exponential loss function. The estimators are compared by mean squared error criteria due to a simulation study. We also find that the mean square error is the best performance of the estimator from that found in quadratic, weighted, linear and non-linear exponential loss functions.
The numerical resolve nonlinear system of Volterra integral equation of the second kind (NLSVIEK2) has been considered. The exponential function is used as the base function of the collocation method to approximate the resolve of the problem. Arithmetic epitome are performed which have already been solved by weighted residual manner, Taylor manner and block- by- block(2, 3, 5).
In this paper, we derived an estimators and parameters of Reliability and Hazard function of new mix distribution ( Rayleigh- Logarithmic) with two parameters and increasing failure rate using Bayes Method with Square Error Loss function and Jeffery and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived of Bayesian estimator compared to the to the Maximum Likelihood of this function using Simulation technique by Monte Carlo method under different Rayleigh- Logarithmic parameter and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator in all sample sizes with application
The goal (purpose) from using development technology that require mathematical procedure related with high Quality & sufficiency of solving complex problem called Dynamic Programming with in recursive method (forward & backward) through finding series of associated decisions for reliability function of Pareto distribution estimator by using two approach Maximum likelihood & moment .to conclude optimal policy
The main aim of this paper is to study how the different estimators of the two unknown parameters (shape and scale parameter) of a generalized exponential distribution behave for different sample sizes and for different parameter values. In particular,
. Maximum Likelihood, Percentile and Ordinary Least Square estimators had been implemented for different sample sizes (small, medium, and large) and assumed several contrasts initial values for the two parameters. Two indicators of performance Mean Square Error and Mean Percentile Error were used and the comparisons were carried out between different methods of estimation by using monte carlo simulation technique .. It was obse
... Show MorePrevious studies indicated that supplementation with antioxidants has a protective effects against oxidative stress–induced damage in type 2 diabetes. In this study we evaluated the antioxidant effects of melatonin on the oxidative stress parameters and microalbuminuria in type 2 DM patients. 30 patients with type 2 DM were treated with 3mg/day melatonin for 90 days. Erythrocytes and plasma MDA and glutathione, fasting plasma glucose, %HbAIC, microalbuminuria, total plasma protein and lipid profile were measured each 30 days and compared with those obtained from 20 healthy controls.
A decrease in MDA levels associated with the elevation in GSH levels were observed, compared with the pre–treatment levels.
... Show MoreThis manuscript presents a new approach to accurately calculating exponential integral function that arises in many applications such as contamination, groundwater flow, hydrological problems and mathematical physics. The calculation is obtained with easily computed components without any restrictive assumptions
A detailed comparison of the execution times is performed. The calculated results by the suggested approach are better and faster accuracy convergence than those calculated by other methods. Error analysis of the calculations is studied using the absolute error and high convergence is achieved. The suggested approach out-performs all previous methods used to calculate this function and this decision is
... Show MoreMost available methods for unit hydrographs (SUH) derivation involve manual, subjective fitting of
a hydrograph through a few data points. The use of probability distributions for the derivation of synthetic
hydrographs had received much attention because of its similarity with unit hydrograph properties. In this
paper, the use of two flexible probability distributions is presented. For each distribution the unknown
parameters were derived in terms of the time to peak(tp), and the peak discharge(Qp). A simple Matlab
program is prepared for calculating these parameters and their validity was checked using comparison
with field data. Application to field data shows that the gamma and lognormal distributions had fit well.<
In this paper an estimator of reliability function for the pareto dist. Of the first kind has been derived and then a simulation approach by Monte-Calro method was made to compare the Bayers estimator of reliability function and the maximum likelihood estimator for this function. It has been found that the Bayes. estimator was better than maximum likelihood estimator for all sample sizes using Integral mean square error(IMSE).
In this paper, Bayes estimators for the shape and scale parameters of Gamma distribution under the Entropy loss function have been obtained, assuming Gamma and Exponential priors for the shape and scale parameters respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation. Based on Monte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s). The results show that, the performance of the Bayes estimator under Entropy loss function is better than other estimates in all cases.
This paper concerns with deriving and estimating the reliability of the multicomponent system in stress-strength model R(s,k), when the stress and strength are identical independent distribution (iid), follows two parameters Exponentiated Pareto Distribution(EPD) with the unknown shape and known scale parameters. Shrinkage estimation method including Maximum likelihood estimator (MLE), has been considered. Comparisons among the proposed estimators were made depending on simulation based on mean squared error (MSE) criteria.