Preferred Language
Articles
/
ijs-515
Estimate the Two Parameters of Gamma Distribution Under Entropy Loss Function
...Show More Authors

In this paper, Bayes estimators for the shape and scale parameters of Gamma distribution under the Entropy loss function have been obtained, assuming Gamma and Exponential priors for the shape and scale parameters respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation. Based on Monte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s). The results show that, the performance of the Bayes estimator under Entropy loss function is better than other estimates in all cases.   

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jan 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Bayesian Estimation for Two Parameters of Gamma Distribution Under Precautionary Loss Function
...Show More Authors

In the current study, the researchers have been obtained Bayes estimators for the shape and scale parameters of Gamma distribution under the precautionary loss function, assuming the priors, represented by Gamma and Exponential priors for the shape and scale parameters respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation.

Based on Monte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s). The results show that, the performance of Bayes estimator under precautionary loss function with Gamma and Exponential priors is better than other estimates in all cases.

View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sun May 26 2019
Journal Name
Iraqi Journal Of Science
Bayesian Estimation for Two Parameters of Gamma Distribution under Generalized Weighted Loss Function
...Show More Authors

This paper deals with, Bayesian estimation of the parameters of Gamma distribution under Generalized Weighted loss function, based on Gamma and Exponential priors for the shape and scale parameters, respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation. Based on Monte Carlo simulation method, those estimators are compared in terms of the mean squared errors (MSE’s).

View Publication Preview PDF
Scopus (6)
Crossref (4)
Scopus Crossref
Publication Date
Sun May 26 2019
Journal Name
Iraqi Journal Of Science
Bayesian Estimation for Two Parameters of Gamma Distribution under Generalized Weighted Loss Function
...Show More Authors

This paper deals with, Bayesian estimation of the parameters of Gamma distribution under Generalized Weighted loss function, based on Gamma and Exponential priors for the shape and scale parameters, respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation. Based on Monte Carlo simulation method, those estimators are compared in terms of the mean squared errors (MSE’s).

Scopus (6)
Crossref (4)
Scopus Crossref
Publication Date
Wed Oct 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Bayesian Estimation for Two Parameters of Weibull Distribution under Generalized Weighted Loss Function
...Show More Authors

In this paper, Bayes estimators for the shape and scale parameters of Weibull distribution have been obtained using the generalized weighted loss function, based on Exponential priors. Lindley’s approximation has been used effectively in Bayesian estimation. Based on theMonte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s).

View Publication Preview PDF
Crossref
Publication Date
Sat Jun 27 2020
Journal Name
Iraqi Journal Of Science
Bayesian Estimation for the Parameters and Reliability Function of Basic Gompertz Distribution under Squared Log Error Loss Function
...Show More Authors

In this paper, some estimators for the unknown shape parameters and reliability function of Basic Gompertz distribution were obtained, such as Maximum likelihood estimator and some Bayesian estimators under Squared log error loss function by using Gamma and Jefferys priors. Monte-Carlo simulation was conducted to compare the performance of all estimates of the shape parameter and Reliability function, based on mean squared errors (MSE) and integrated mean squared errors (IMSE's), respectively. Finally, the discussion is provided to illustrate the results that are summarized in tables.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Thu Apr 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Bayesian Estimation for Two Parameters of Exponential Distribution under Different Loss Functions
...Show More Authors

In this paper, two parameters for the Exponential distribution were estimated using the
Bayesian estimation method under three different loss functions: the Squared error loss function,
the Precautionary loss function, and the Entropy loss function. The Exponential distribution prior
and Gamma distribution have been assumed as the priors of the scale γ and location δ parameters
respectively. In Bayesian estimation, Maximum likelihood estimators have been used as the initial
estimators, and the Tierney-Kadane approximation has been used effectively. Based on the MonteCarlo
simulation method, those estimators were compared depending on the mean squared errors (MSEs).The results showed that the Bayesian esti

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Apr 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Bayesian Inference for the Parameter and Reliability Function of Basic Gompertz Distribution under Precautionary loss Function
...Show More Authors

     In this paper, some estimators for the unknown shape parameter and reliability function of Basic Gompertz distribution have been obtained, such as Maximum likelihood estimator and Bayesian estimators under Precautionary loss function using Gamma prior and Jefferys prior. Monte-Carlo simulation is conducted to compare mean squared errors (MSE) for all these estimators for the shape parameter and integrated mean squared error (IMSE's) for comparing the performance of the Reliability estimators. Finally, the discussion is provided to illustrate the results that summarized in tables.

View Publication Preview PDF
Crossref
Publication Date
Mon Sep 25 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Comparison of the Suggested loss Function with Generalized Loss Function for One Parameter Inverse Rayleigh Distribution
...Show More Authors

The experiences in the life are considered important for many fields, such as industry, medical and others. In literature, researchers are focused on flexible lifetime distribution.

In this paper, some Bayesian estimators for the unknown scale parameter  of Inverse Rayleigh Distribution have been obtained, of different two loss functions, represented by Suggested and Generalized loss function based on Non-Informative prior using Jeffery's and informative prior represented by Exponential distribution. The performance of   estimators is compared empirically with Maximum Likelihood estimator, Using Monte Carlo Simulation depending on the Mean Square Error (MSE). Generally, the preference of Bayesian method of Suggeste

... Show More
View Publication Preview PDF
Publication Date
Tue Nov 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Proposal of Using Principle of Maximizing Entropy of Generalized Gamma Distribution to Estimate the Survival probabilities of the Population in Iraq
...Show More Authors

In this research we been estimated the survival function for data suffer from the disturbances and confusion of Iraq Household Socio-Economic Survey: IHSES II 2012 , to data from a five-year age groups follow the distribution of the Generalized Gamma: GG. It had been used two methods for the purposes of estimating and fitting which is the way the Principle of Maximizing Entropy: POME, and method of booting to nonparametric smoothing function for Kernel, to overcome the mathematical problems plaguing integrals contained in this distribution in particular of the integration of the incomplete gamma function, along with the use of traditional way in which is the Maximum Likelihood: ML. Where the comparison on the basis of the method of the Cen

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Proposed Entropy Loss function and application to find Bayesian estimator for Exponential distribution parameter
...Show More Authors

The aim of this paper to find Bayes estimator under new loss function assemble between symmetric and asymmetric loss functions, namely, proposed entropy loss function, where this function that merge between entropy loss function and the squared Log error Loss function, which is quite asymmetric in nature. then comparison a the Bayes estimators of exponential distribution under the proposed function, whoever, loss functions ingredient for the proposed function the using a standard mean square error (MSE) and Bias quantity (Mbias), where the generation of the random data using the simulation for estimate exponential distribution parameters different sample sizes (n=10,50,100) and (N=1000), taking initial

... Show More
View Publication Preview PDF
Crossref