Preferred Language
Articles
/
jih-1825
On Shrinkage Estimation for R(s, k) in Case of Exponentiated Pareto Distribution

   This paper concerns with deriving and estimating the reliability of the multicomponent system in stress-strength model R(s,k), when the stress and strength are identical independent distribution (iid), follows two parameters Exponentiated Pareto Distribution(EPD) with the unknown shape and known scale parameters. Shrinkage estimation method including Maximum likelihood estimator (MLE), has been considered. Comparisons among the proposed estimators were made depending on simulation based on mean squared error (MSE) criteria.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Oct 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Employ Shrinkage Estimation Technique for the Reliability System in Stress-Strength Models: special case of Exponentiated Family Distribution

       A reliability system of the multi-component stress-strength model R(s,k) will be considered in the present paper ,when the stress and strength are independent and non-identically distribution have the Exponentiated Family Distribution(FED) with the unknown  shape parameter α and known scale parameter λ  equal to two and parameter θ equal to three. Different estimation methods of R(s,k) were introduced corresponding to Maximum likelihood and Shrinkage estimators. Comparisons among the suggested estimators were prepared depending on simulation established on mean squared error (MSE) criteria.

View Publication Preview PDF
Crossref
Publication Date
Thu Feb 02 2012
Journal Name
Education College Journal/al-mustansiriyah University
On Significance Testimator in Pareto Distribution Via Shrinkage Technique

In this paper, preliminary test Shrinkage estimator have been considered for estimating the shape parameter α of pareto distribution when the scale parameter equal to the smallest loss and when a prior estimate α0 of α is available as initial value from the past experiences or from quaintance cases. The proposed estimator is shown to have a smaller mean squared error in a region around α0 when comparison with usual and existing estimators.

Preview PDF
Publication Date
Sun Nov 04 2012
Journal Name
Journal Of The College Of Basic Education
Double Stage Shrinkage Estimator in Pareto Distribution

View Publication Preview PDF
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Different Estimation Methods for System Reliability Multi-Components model: Exponentiated Weibull Distribution

        In this paper, estimation of system reliability of the multi-components in stress-strength model R(s,k) is considered, when the stress and strength are independent random variables and follows the Exponentiated Weibull Distribution (EWD) with known first shape parameter θ and, the second shape parameter α is unknown using different estimation methods. Comparisons among the proposed estimators through  Monte Carlo simulation technique were made depend on mean squared error (MSE)  criteria

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jul 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Applying Shrinkage Estimation Technique of P(Y<Max X1, X2,…, Xk) in Case of Generalized Exponential Distribution

     This paper concerned with estimation reliability (­ for K components parallel system of the stress-strength model with non-identical components which is subjected to a common stress, when the stress and strength follow the Generalized Exponential Distribution (GED) with unknown shape parameter α and the known scale parameter θ (θ=1) to be common. Different shrinkage estimation methods will be considered to estimate ­ depending on maximum likelihood estimator and prior estimates based on simulation using mean squared error (MSE) criteria. The study approved that the shrinkage estimation using shrinkage weight function was the best.

 

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Mar 01 2011
Journal Name
Journal Of Economic And Administrative Science
On Shrinkage Estimation for Generalized Exponential Distribution

Preview PDF
Publication Date
Mon Jan 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Estimation of P(Y<X) in Case Inverse Kumaraswamy Distribution

The estimation of the stressÙ€ strength reliability of Invers Kumaraswamy distribution will be introduced in this paper based on the maximum likelihood, moment and shrinkage methods. The mean squared error has been used to compare among proposed estimators. Also a Monte Carlo simulation study is conducted to investigate the performance of the proposed methods in this paper.

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
Estimation of (S-S) reliability for inverted exponential distribution

View Publication
Scopus Crossref
Publication Date
Wed May 10 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Double Stage Shrinkage-Bayesian Estimator for the Scale Parameter of Exponential Distribution

  This paper is concerned with Double Stage Shrinkage Bayesian (DSSB) Estimator for lowering the mean squared error of classical estimator ˆ q for the scale parameter (q) of an exponential distribution in a region (R) around available prior knowledge (q0) about the actual value (q) as initial estimate as well as to reduce the cost of experimentations.         In situation where the experimentations are time consuming or very costly, a Double Stage procedure can be used to reduce the expected sample size needed to obtain the estimator. This estimator is shown to have smaller mean squared error for certain choice of the shrinkage weight factor y( ) and for acceptance region R. Expression for

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
An Efficient Single Stage Shrinkage Estimator for the Scale parameter of Inverted Gamma Distribution

 The present  paper agrees  with estimation of scale parameter θ of the Inverted Gamma (IG) Distribution when the shape parameter α is known (α=1), bypreliminarytestsinglestage shrinkage estimators using  suitable  shrinkage weight factor and region.  The expressions for the Bias, Mean Squared Error [MSE] for the proposed estimators are derived. Comparisons between the considered estimator with the usual estimator (MLE) and with the existing estimator  are performed .The results are presented in attached tables.

View Publication Preview PDF
Crossref