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Abstract:

In this paper, preliminary test Shrinkagéireator have been
considered for estimating the shape parameterof pareto
distribution when the scale parameter equal tsthallest loss and
when a prior estimate, of a is available as initial value from the
past experiences or from quaintance cases.

The proposed estimator is shown to havemaller mean
squared error in a region arouod when comparison with usual
and existing estimators.
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1. Introduction

1.1 TheModel

The pareto model is very often used assashaf Excess of
loss quotations as it gives a pretty good desomptif the random
behavior of large losses, and often used to mdwedlistribution of
income; see [4], [6] and [8].

Consider a random sample X,, ..., X, from the pareto
distribution with the following p.d.f.

a,, —(a+l) S
f(X:a,)\):{ak X for o,k >0,x> Kk
0 o.W.

..(2)
In conventional notation, we writépar@,k) wherea and k
are the shape and scale parameter respectively.
Some times we may have a prior guess valyedue to past
experiences or from a quaintance with similar $ituna of the
parameten to be estimated. If this value is very close te ttue
value, the Shrinkage technique is useful to getiraproved
estimator.
According to [13], such prior estimate may arise day one of a
number of reasons, e.g., we are estimatiramnd
(i) we believen, is close to the true value af or
(i) We fear thato, may be near the true value of i.e,;
something bad happensif=ay, and we do not know about it.
For such cases, this prior guess value may bezedilito
improve the estimation procedure with usual estmat
(MLE) via shrinkage estimato# which including Shrinkage
weight factory(a),0< p(@)<1 as follows, see [3]
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&6=(a)a +(1-y(@))a,
..(2)

The authors in [1], [5], [11], [13] and efls suggested
Shrunken estimators (2) for the parameters of idiffedistribution
when a guess prior value is available

They showed that these estimators perfagttebthan usual
estimator in the term of mean square error whergthess value is
close to the true value.

Therefore to make sure whether the prior guessevédy) is
approximately or close to the true valwe ©r not, we may test
Ho:a = ag vS. Ha:0 # ap and a preliminary test Shrunken estimator
of significance are employed as follows:
_fw@a+@-yg, @), , if H, accepter
_{lsz(@()6(+(1—L|J2(6())O(O if H, rejected

T

...(3)

Using pre-assigned level of significadcehe critical region (R)
for such test is pre test region using specifit statistic, where
W (&), 1 =1, 2 are Shrinkage weight factors such that 0

< g, (6) <1 anda is the usual estimator (MLE for example).

Preliminary test Shrunken estimators (3) have lmmsidered in
different contexts by [12], [9], [7], [10], [1] an@].

The aim of this paper is to estimate thapghparametex of
pareto distribution using mentioned preliminaryttafirunken
estimator (3) and study its behavior when we derivbe
expressions of its Bias, Mean Square Error andtivel&fficiency
and study their performance. Numerical results@mtlusions for
these expressions were made to show the effedtitree@roposed
estimator as well as some comparisons with thel @hexisting
estimators were made.

1.2 Usual Estimation of the Shape Parameter a
Let %, X, ..., %, be identically independent pareto distributed

random variables.

The maximum likelihood estimator af when k = min(¥ [the

smallest loss] is defined in [8] as below:
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- g'”(mirxli(xi)j
(4

It follows easily thatln( X, j will be exponentially

min(x, )
distributed with mean 1d. Then

T:Zn“ln( X, J will be Gamma distributed with (n) and ¢3/

iz min(x;)

parameters.
~ n
Now, when,, . =T we get

5 Y= R 1
E@ye)= L and var@,,.e ) =17 (= 2)
...(5)

The maximum likelihood estimatér, . is biased estimator

but the followinga is unbiased estimator
G = n-1. _n-1
n MLE T

...(6)

l.e.; E(@)=a andvar@)= a

2

Furthermore,
2

a
2 < Var@MLE )-

var(@)=

Thus, d is a better estimator of thang,, . .

Therefore, we used estimator above in preliminary test Shrunken
estimator (3) as a usual estimator in the nexi@®act

2. Preliminary Test Shrunken Estimator
Recall the estimator which is defined i), (® estimate the

shape parameter of pareto distribution as:
P, (6)a +@1-y, (@), ,if a0R,
"l @a+a-g,@a, i GOR.
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where a is unbiased estimator defined in (@)(6),1 =1, 2is a
Shrinkage weight factors such thakQ;(l < 1 and it may be a
function of @ or a constant as well as R is the pretest region f

testing the hypothesisgldt = 0y against H:a # o, with level of

significance A using test statistic T(a/ao)_z(na Da,

See [2].
l.e.; R=[asMs b}

a

2(n-1o, 2(n- 1)10} 7)
b ’ a

OI’R={

where a and b are the lower and upper A)(percentile point of
chi-square distribution with degree of freedom 2n.

n+10

Noted that, we put forwarg, (&) =0 andy, (&) =k :e{ - in &,.

The Expression of the proposed estimaigris defined as
Bias@g, /o ,R)= EQe-a )
= [(ag =~ a)f (6)da + [[k(G ~a,) +(ap ~)]f (8

whereR is the complement region of R in real space and i§ a
p.d.f. of & which has been derived as below :

[(n —1)(1 }nﬂe_(n_al)q
f(a) = s
r(n) (n—-1a

0 O.W.
...(8)
We conclude,
Bias@p; /a, R)=a{C-1)J, (@b (& K- I (- DkJ (@ —(1-k)¢J, (@, b+, (a*, b¥)}
..-(9)

whereJ, @ b= jy y;;dyl =012, ...(10)

fora>0

alsog =—2.a*={" [, b=’ ' andy = (M- al)“ ..(11)
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we denote to the Bias Ratio ad)Bghich is defined as

Bias@g-, /a,R
B(dy) = 2 LT

..(12)

The expression of the Mean Squared Error (MSEpofs
MSE@®p, /a,R)= EQ&-a ¥

2

=a{({-D @b+ nk_ >t —1*(k-1°-K(n-1)°J (@ 0% 2( G Ja ) +

{3, (@, b~ 2k - DI(n- 1 (@ b7 J @ b9 T B J (a9
..(13)

The expression of Efficiency ofg, relative to thed denoted by
R.Eff(8p,/a,R) is defined as below:

MSE@) .
MSE@p, /a,R)’ see [13], [1] and [2] ...(14)

R.Eff (@ a,R)=

3. Conclusions and Numerical Results
The computations of the statistical indecat Relative
Efficiency [R.Eff()] and Bias Ratio [B]] expressions were used
for the considered testimatorg. These computations were
performed [using Mat.LAB.program] for the constams =
0.01,0.05,0.1, n = 4,6,8,10,12, 16,20,30 &d0.25(0.25)2. Some
of these computations are displayed in attachete thly some
samples of these constants. The observation metionthe table
leads to the following results:
i. The Relative Efficiency [R.Efff] of & are adversely
proportional with small value d& especially whed =1, i.e.A
= 0.01 yield highest efficiency
ii.The Relative Efficiency [R.Efff] of & has maximum value
whena=0ay({=1), for each nQ, and decreasing otherwisgz().
This feature shown the important usefulness ofrpgmmwledge
which given higher effects of proposed estimatowal as the
important role of shrinkage technique and its @ojahy.
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lii.Bias ratio [B()] of & increases whefiincreases.

iv.Bias ratio [B()] of & are reasonably small wherra, for each
n, A, and increases otherwise. This property shown tiat
proposed estimata¥ is very close to unbias property especially
whenao=aj.

v.The Relative efficiency [R.Eff]] of & decreases function with
Increases value of n, for eah{. This property shown that the
proposed estimator reduce the cost of random sasigee and
then overall sample size saved.

vi.The Effective Interval [the value of that makes R.Eff)
greater than one] using proposed estimatas [.75,1.5]. Here
the pretest criterion is very important for guaesnthat prior
information is very closely to the actual value gévent it
faraway from it, which get optimal effect of thensodered
estimator to obtain high efficiency.

vii.The considered estimat@ér is better than the classical estimator
especially whero=a,, which is given the effective o# and
important weight of prior knowledge as well as itherement of
efficiency may be reach to tens time.
viii.The proposed estimata has smaller MSE than some existing

estimators introduced by authors, see for exanjgleand [8].
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Table (1)
Shown Bias Ratio [B]] and Relative Efficiency [R.Eff]] of & w.r.t. A, n and
¢
4
R.Eff.
A n , 0.25 0.75 1 1.25 1.75 2
Bias
A R.Eff() 0.941 8.319 1.69x10° 7.85 0.887 0.5
B(Y (- 0.729) (-0.244) | (318103 | (0.252) | (0.751) (1)
o R.Ef() 0.369 3.203 138.926 2535 | 0.295 | 0.167
0.01 B! (- 0.671) (- 0.224) (0.012) (0.255) | (0.751) (1)
16 | REfO 0.195 1.709 40.501 1.077 0.127 | 0.072
B(Y (- 0.602) (- 0.198) (0.02) (0.257) | (0.75) | (0.999)
b0 | REF( 0.162 1.398 31.984 0.853 | 0.099 | 0.056
B(D (- 0.583) (- 0.193) (0.019) (0.065) | (0.75) | (0.998)
. R.EF() 0.944 8.568 1.39310° 7.725 0.885 0.5
B(0) (- 0.727) (-0.241) | (5894x10°%) | (0.254) | (0.751) (1)
o R.EF(] 0.369 3.342 128.726 2.481 0.295 | 0.167
0.05 B(0) (- 0.671) (- 0.22) (0.016) (0.258) | (0.751) | (0.997)
6 | REFO 0.195 1.68 37.736 1.124 | 0.128 | 0.072
B(0) (- 0.602) (-0.2) (0.015) (0.251) | (0.747) | (0.992)
0 | REMQ 0.162 1.378 27.294 0.927 0.1 0.056
B(0) (- 0.583) (- 0.194) (0.011) (0.243) | (0.745) | (0.991)
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