In this paper, a Bayesian analysis is made to estimate the Reliability of two stress-strength model systems. First: the reliability of a one component strengths X under stress Y. Second, reliability of one component strength under three stresses. Where X and Y are independent generalized exponential-Poison random variables with parameters (α,λ,θ) and (β,λ,θ) . The analysis is concerned with and based on doubly type II censored samples using gamma prior under four different loss functions, namely quadratic loss function, weighted loss functions, linear and non-linear exponential loss function. The estimators are compared by mean squared error criteria due to a simulation study. We also find that the mean square error is the best performance of the estimator from that found in quadratic, weighted, linear and non-linear exponential loss functions.
Variable selection in Poisson regression with high dimensional data has been widely used in recent years. we proposed in this paper using a penalty function that depends on a function named a penalty. An Atan estimator was compared with Lasso and adaptive lasso. A simulation and application show that an Atan estimator has the advantage in the estimation of coefficient and variables selection.
The survival analysis is one of the modern methods of analysis that is based on the fact that the dependent variable represents time until the event concerned in the study. There are many survival models that deal with the impact of explanatory factors on the likelihood of survival, including the models proposed by the world, David Cox, one of the most important and common models of survival, where it consists of two functions, one of which is a parametric function that does not depend on the survival time and the other a nonparametric function that depends on times of survival, which the Cox model is defined as a semi parametric model, The set of parametric models that depend on the time-to-event distribution parameters such as
... Show MoreRheumatoid arthritis is a chronic inflammatory autoimmune disease its etiology is unknown . The classical autoimmune diseases, have adaptive immune genetic associations with autoantibodies and major histocompatibility complex(MHC) class II such as rheumatoid arthritis (RA), diabetes mellitus type two (DM II). Serum of99 males suffering from RA without DMII as group (G1), 45 males suffering from RA with DM II as group (G2) and 40 healthy males as group (G3) were enrolled in this study to estimation of alkaline phosphates (ALP),C-reactive protein(CRP) and Pentraxin-3(PTX). Results showed a highly significant increase in PTX3 levels in G1 and G2 compared to G3 and a significant decrease in G1comparing to G2. Results also revealed a si
... Show MoreThe aim of this article is to study the solution of Elliptic Euler-Poisson-Darboux equation, by using the symmetry of Lie Algebra of orders two and three, as a contribution in partial differential equations and their solutions.
Hormones, their receptors, and the associated signaling pathways make compelling drug targets because of their wide-ranging biological significance to study the role of asprosin in obese male patients with diabetic mellitus type II. ELISA method was used to assay asprosin and insulin. Blood was taken with drawn sample from 30 obese normal patients with age range (40-60) years, 30 diabetic patients with age range (40-60) years at duration of disease (1-5) years and 30 normal healthy patients. The mean difference between T2DM according to insulin % (23.8±0.6) was increased than the mean of IFG (17.7±1.0) (P 0.000). The mean difference between T2DM according to asprosin (122.1±21.8) was increased than the mean of IFG (51.4±2.7) (P 0
... Show MoreThis paper deals with constructing mixed probability distribution from exponential with scale parameter (β) and also Gamma distribution with (2,β), and the mixed proportions are ( .first of all, the probability density function (p.d.f) and also cumulative distribution function (c.d.f) and also the reliability function are obtained. The parameters of mixed distribution, ( ,β) are estimated by three different methods, which are maximum likelihood, and Moments method,as well proposed method (Differential Least Square Method)(DLSM).The comparison is done using simulation procedure, and all the results are explained in tables.
In this paper, point estimation for parameter ? of Maxwell-Boltzmann distribution has been investigated by using simulation technique, to estimate the parameter by two sections methods; the first section includes Non-Bayesian estimation methods, such as (Maximum Likelihood estimator method, and Moment estimator method), while the second section includes standard Bayesian estimation method, using two different priors (Inverse Chi-Square and Jeffrey) such as (standard Bayes estimator, and Bayes estimator based on Jeffrey's prior). Comparisons among these methods were made by employing mean square error measure. Simulation technique for different sample sizes has been used to compare between these methods.
Methods of estimating statistical distribution have attracted many researchers when it comes to fitting a specific distribution to data. However, when the data belong to more than one component, a popular distribution cannot be fitted to such data. To tackle this issue, mixture models are fitted by choosing the correct number of components that represent the data. This can be obvious in lifetime processes that are involved in a wide range of engineering applications as well as biological systems. In this paper, we introduce an application of estimating a finite mixture of Inverse Rayleigh distribution by the use of the Bayesian framework when considering the model as Markov chain Monte Carlo (MCMC). We employed the Gibbs sampler and
... Show More