Clustering algorithms have recently gained attention in the related literature since
they can help current intrusion detection systems in several aspects. This paper
proposes genetic algorithm (GA) based clustering, serving to distinguish patterns
incoming from network traffic packets into normal and attack. Two GA based
clustering models for solving intrusion detection problem are introduced. The first
model coined as handles numeric features of the network packet, whereas
the second one coined as concerns all features of the network packet.
Moreover, a new mutation operator directed for binary and symbolic features is
proposed. The basic concept of proposed mutation operator depends on the most
frequent value of the features using mode operator. The proposed GA-based
clustering models are evaluated using Network Security Laboratory-Knowledge
Discovery and Data mining (NSL-KDD) benchmark dataset. Also, it is compared
with two baseline methods namely k-means and k-prototype to judge their
performance and to confirm the value of the obtained clustering structures. The
experiments demonstrate the effectiveness of the proposed models for intrusion
detection problem in which and models outperform the two baseline
methods in accuracy ( ), detection rate ( ) and true negative rate ( ).
Moreover, the results prove the positive impact of the proposed mutation operator to
enhance the strength of model in all evaluation metrics. It successfully attains
6.4, 5.463 and 3.279 percentage of relative improvement in over and
baseline models respectively.
In the present work, pattern recognition is carried out by the contrast and relative variance of clouds. The K-mean clustering process is then applied to classify the cloud type; also, texture analysis being adopted to extract the textural features and using them in cloud classification process. The test image used in the classification process is the Meteosat-7 image for the D3 region.The K-mean method is adopted as an unsupervised classification. This method depends on the initial chosen seeds of cluster. Since, the initial seeds are chosen randomly, the user supply a set of means, or cluster centers in the n-dimensional space.The K-mean cluster has been applied on two bands (IR2 band) and (water vapour band).The textural analysis is used
... Show MoreBackground: Calcaneus is a spongy cancellous bone with rich blood supply , its fracture heals more rapidly providing no occurrence of infection and soft tissue injury around ,no gross malposition of fragments. The associated pain leads to a major impairment in life quality. The aim of treatment for calcaneal fractures is the decrease of pain and rebuilding of walking ability for patients with normal foot shape and the ability to wear normal foot wear. To reduce complications, a minimally invasive technique for the treatment of displaced intra-articular fractures of the calcaneus was preferred to use.
The purpose of this study was to determine whether the closed reduction and percutaneous K. wire fixation of displ
... Show MoreElectrocardiography (ECG or EKG) is the process of recording the electrical activity of the heart over a period of time using electrodes placed on the skin. The main idea is how to detect activity of the heart from skin that appears in video without using electrodes. This paper, proposes an algorithm that works on analyzing video frames to detect heartbeats from tiny changes that happen in a skin color luminance (brightness) and then using them to amplifying heartbeat and drawing ECG. The results show that the heartbeat was detected and amplified and ECG was drawing from any part of the human body in different situations and from different video.
In real world, almost all networks evolve over time. For example, in networks of friendships and acquaintances, people continually create and delete friendship relationship connections over time, thereby add and draw friends, and some people become part of new social networks or leave their networks, changing the nodes in the network. Recently, tracking communities encountering topological shifting drawn significant attentions and many successive algorithms have been proposed to model the problem. In general, evolutionary clustering can be defined as clustering data over time wherein two concepts: snapshot quality and temporal smoothness should be considered. Snapshot quality means that the clusters should be as precise as possible durin
... Show MoreBackground: As photochemical reaction that can stiffen the cornea, CXL is the only promising method of preventing progression of keratectasia such as KC and secondary ectasia following refractive surgery. The aim of CXL is to stabilize the underlying condition with a small chance of visual improvement. Objective: To show the sequences of changes in visual acuity and topographic outcomes during 1 year post CXL for patients with progressive Keratoconus.Type of the study: Cross sectional studyMethods: CXL procedure was done for 45 eyes with progressive KC. The following parameters had been monitored pre operatively, 1, 3, 6 and 12 months postoperatively: K apex, K2, corneal thickness at thinnest location, anterior and posterior elevation po
... Show MoreLet M be a weak Nobusawa -ring and γ be a non-zero element of Γ. In this paper, we introduce concept of k-reverse derivation, Jordan k-reverse derivation, generalized k-reverse derivation, and Jordan generalized k-reverse derivation of Γ-ring, and γ-homomorphism, anti-γ-homomorphism of M. Also, we give some commutattivity conditions on γ-prime Γ-ring and γ-semiprime Γ-ring .
In this paper, an algorithm for reconstruction of a completely lost blocks using Modified
Hybrid Transform. The algorithms examined in this paper do not require a DC estimation
method or interpolation. The reconstruction achieved using matrix manipulation based on
Modified Hybrid transform. Also adopted in this paper smart matrix (Detection Matrix) to detect
the missing blocks for the purpose of rebuilding it. We further asses the performance of the
Modified Hybrid Transform in lost block reconstruction application. Also this paper discusses
the effect of using multiwavelet and 3D Radon in lost block reconstruction.
One of the challenging and active research topics in the recent years is Facial Expression. This paper presents the method to extract the features from the facial expressions from still images. Feature extraction is very important for classification and recognition process. This paper involve three stages which contain capture the images, pre-processing and feature extractions. This method is very efficient in feature extraction by applying haar wavelet and Karhunen-Loève Transform (KL-T). The database used in this research is from Cohen-Kanade which used six expressions of anger, sadness fear, happiness, disgust and surprise. Features that have been extracted from the image of facial expressions were used as inputs to the neural networ
... Show MoreRecognizing cars is a highly difficult task due to the wide variety in the appearance of cars from the same car manufacturer. Therefore, the car logo is the most prominent indicator of the car manufacturer. The captured logo image suffers from several problems, such as a complex background, differences in size and shape, the appearance of noise, and lighting circumstances. To solve these problems, this paper presents an effective technique for extracting and recognizing a logo that identifies a car. Our proposed method includes four stages: First, we apply the k-medoids clustering method to extract the logo and remove the background and noise. Secondly, the logo image is converted to grayscale and also converted to a binary imag
... Show MoreIn this work, we introduce an intuitionistic fuzzy ideal on a KU-semigroup as a generalization of the fuzzy ideal of a KU-semigroup. An intuitionistic fuzzy k-ideal and some related properties are studied. Also, a number of characteristics of the intuitionistic fuzzy k-ideals are discussed. Next, we introduce the concept of intuitionistic fuzzy k-ideals under homomorphism along with the Cartesian products.