Let M be a weak Nobusawa -ring and γ be a non-zero element of Γ. In this paper, we introduce concept of k-reverse derivation, Jordan k-reverse derivation, generalized k-reverse derivation, and Jordan generalized k-reverse derivation of Γ-ring, and γ-homomorphism, anti-γ-homomorphism of M. Also, we give some commutattivity conditions on γ-prime Γ-ring and γ-semiprime Γ-ring .
Let be a prime ring, be a non-zero ideal of and be automorphism on. A mapping is called a multiplicative (generalized) reverse derivation if where is any map (not necessarily additive). In this paper, we proved the commutativity of a prime ring R admitting a multiplicative (generalized) reverse derivation satisfying any one of the properties:
for all x, y
Let R be a Г-ring, and σ, τ be two automorphisms of R. An additive mapping d from a Γ-ring R into itself is called a (σ,τ)-derivation on R if d(aαb) = d(a)α σ(b) + τ(a)αd(b), holds for all a,b ∈R and α∈Γ. d is called strong commutativity preserving (SCP) on R if [d(a), d(b)]α = [a,b]α(σ,τ) holds for all a,b∈R and α∈Γ. In this paper, we investigate the commutativity of R by the strong commutativity preserving (σ,τ)-derivation d satisfied some properties, when R is prime and semi prime Г-ring.
In this paper, we study the concepts of generalized reverse derivation, Jordan
generalized reverse derivation and Jordan generalized triple reverse derivation on -
ring M. The aim of this paper is to prove that every Jordan generalized reverse
derivation of -ring M is generalized reverse derivation of M.
In this paper we study necessary and sufficient conditions for a reverse- centralizer of a semiprime ring R to be orthogonal. We also prove that a reverse- centralizer T of a semiprime ring R having a commuting generalized inverse is orthogonal
In this paper, we introduce the concept of generalized strong commutativity (Cocommutativity) preserving right centralizers on a subset of a Γ-ring. And we generalize some results of a classical ring to a gamma ring.
In this paper, we will generalized some results related to centralizer concept on
prime and semiprime Γ-rings of characteristic different from 2 .These results
relating to some results concerning left centralizer on Γ-rings.
Let h is Γ−(λ,δ) – derivation on prime Γ−near-ring G and K be a nonzero semi-group ideal of G and δ(K) = K, then the purpose of this paper is to prove the following :- (a) If λ is onto on G, λ(K) = K, λ(0) = 0 and h acts like Γ−hom. or acts like anti–Γ−hom. on K, then h(K) = {0}.(b) If h + h is an additive on K, then (G, +) is abelian.
In this paper we generalize some of the results due to Bell and Mason on a near-ring N admitting a derivation D , and we will show that the body of evidence on prime near-rings with derivations have the behavior of the ring. Our purpose in this work is to explore further this ring like behavior. Also, we show that under appropriate additional hypothesis a near-ring must be a commutative ring.
The main purpose of this work is to generalize Daif's result by introduceing the concept of Jordan (α β permuting 3-derivation on Lie ideal and generalize these result by introducing the concept of generalized Jordan (α β permuting 3-derivation
This work generalizes Park and Jung's results by introducing the concept of generalized permuting 3-derivation on Lie ideal.