The ground state densities of neutron-rich (11Be,15C) and proton-rich (9C,12N,23Al) exotic nuclei are investigated using a two-body nucleon density distribution (2BNDD) with two frequency shells model (TFSM). The structure of the valence one-neutron of 11Be is in pure (1p1/2) and of 15C in pure (1d5/2) configuration, while the structure of valence one-proton configuration is in 9C,12N are to be in a pure (1p1/2) and 23Al in a pure (2s1/2) . For our studied nuclei, an efficient (2BNDD) operator for point nucleon system folded with two-body correlation operator's functions is used to investigate nuclear matter density distributions, elastic electron scattering form factors, and root-mean square (rms) radii. The effect of the strong tensor force (TC) in nucleon-nucleon forces is taken into account in the correlation. The wave functions of a single particle harmonic oscillator are used with two different oscillator size parameters, βc and βv, the former for core (inner) orbits and the latter for valence (halo) orbits. The measured matter density distributions of these nuclei clearly show the long tail results. The plane wave born approximation (PWBA) is used to investigate the elastic electron scattering form factors for these exotic nuclei.
The possible effect of the collective motion in heavy nuclei has been investigated in the framework of Nilson model. This effect has been searched realistically by calculating the level density, which plays a significant role in the description of the reaction cross sections in the statistical nuclear theory. The nuclear level density parameter for some deformed radioisotopes of (even- even) target nuclei (Dy, W and Os) is calculated, by taking into consideration the collective motion for excitation modes for the observed nuclear spectra near the neutron binding energy. The method employed in the present work assumes equidistant spacing of the collective coupled state bands of the considered isotopes. The present calculated results for f
... Show MoreIn this work, electron number density calculated using Matlab program code with the writing algorithm of the program. Electron density was calculated using Anisimov model in a vacuum environment. The effect of spatial coordinates on the electron density was investigated in this study. It was found that the Z axis distance direction affects the electron number density (ne). There are many processes such as excitation; ionization and recombination within the plasma that possible affect the density of electrons. The results show that as Z axis distance increases electron number density decreases because of the recombination of electrons and ions at large distances from the target and the loss of thermal energy of the electrons in
... Show MoreIn this study, method for experimentally determining the electron density (ne) and the electron temperature (Te) in the atmospheric Argon plasma jet is used; it is based on optical emission spectroscopy (OES). Boltzmann plot method used to calculate these parameters measured for different values of gas flow rate. The results show that the electron temperature decreasing with the increase of gas flow rate also indicates an increasing in the electron density of plasma jet with increasing of gas flow rate.
The transverse electron scattering form factors have been studied for low –lying excited states of 7Li nucleus. These states are specified by J? T= (0.478MeV), (4.63MeV) and (6.68MeV). The transitions to these states are taking place by both isoscalar and isovector components. These form factors have been analyzed in the framework of the multi-nucleon configuration mixing of harmonic oscillator shell model with size parameter brms=1.74fm. The universal two-body of Cohen-Kurath is used to generate the 1p-shell wave functions. The core polarization effects are included in the calculations through effective g-factors and resolved many discrepancies with experiments. A higher configuration effect outside the 1p-shell model space, such
... Show MorePlasma generated by a 1064 nm pulsed Nd: YAG laser with pulse duration of 10 ns concentrated onto an Al solid target under vacuum pressure was examined spectroscopically. The temperature and electron density specifying the plasma were measured by time-resolved spectroscopy of neutral atom and ion line emissions in the time period range of 300–2000 ns. An echelle spectrograph is utilized to appear the plasma emission lines. The temperature was obtained using the spectral line comparison method and the electron density was calculated using the Stark Broadening (SB) method. The electron density was characterized as a function of laser pulse energy. The time range where the plasma is optically thin and is also in local thermodynamic equilibri
... Show MoreThe nuclear structure included the matter, proton and neutron densities of the ground state, the nuclear root-mean-square (rms) radii and elastic form factors of one neutron 23O and 24F halo nuclei have been studied by the two body model of within the harmonic oscillator (HO) and Woods-Saxon (WS) radial wave functions. The calculated results show that the two body model within the HO and WS radial wave functions succeed in reproducing neutron halo in these exotic nuclei. Moreover, the Glauber model at high energy has been used to calculated the rms radii and reaction cross section of these nuclei.
The division partitioning technique has been used to analyze the four electron systems into six-pairs electronic wave functions for ( for the Beryllium atom in its excited state (1s2 2s 3s ) and like ions ( B+1 ,C+2 ) using Hartree-Fock wave functions . The aim of this work is to study atomic scattering form factor f(s) for and nuclear magnetic shielding constant. The results are obtained numerically by using the computer software (Mathcad).
The study of Mars's ionosphere was made by investigating the measurements of the electron density (Ne) depending of the variation of the solar activities through different local time, different seasons, and different altitudes. The datasets has been taken from MARSIS on board the Mars Express spacecraft, the investigation for the solar indices and the electron density (Ne) have been made for two period of time depending on the strength of the geomagnetic storms, the first one was taken when the geomagnetic storms was low as in years (1998 & 2005), the data was chosen for three seasons of these years, Winter (December), Summer (June) and Spring (April). The second period was taken for the years (2001 & 2002) when the geomagnetic s
... Show MoreThe study of Mars's ionosphere was made by investigating the measurements of the electron density (Ne) depending of the variation of the solar activities through different local time, different seasons, and different altitudes. The datasets has been taken from MARSIS on board the Mars Express spacecraft, the investigation for the solar indices and the electron density (Ne) have been made for two period of time depending on the strength of the geomagnetic storms, the first one was taken when the geomagnetic storms was low as in years (1998 & 2005), the data was chosen for three seasons of these years, Winter (December), Summer (June) and Spring (April). The second period was taken for the years (2001 & 2002) when the geomagnetic s
... Show MoreThis study dedicates to provide an information of shell model calculations, limited to fp-shell with an accuracy and applicability. The estimations depend on the evaluation of Hamiltoian’s eigenvalues, that’s compatible with positive parity of energy levels up to (10MeV) for most isotopes of Ca, and the Hamiltonian eigenvectors transition strength probability and inelastic electron-nucleus scattering. The Hamiltonian is effective in the regions where we have experimented. The known experimental data of the same were confirmed and proposed a new nuclear level for others.
The calculations are done with the help of OXBASH code. The results show good agreement with experimental energy states
... Show More