Preferred Language
Articles
/
bsj-2878
The Electro-Excitation Form Factors for Low-Lying States of 7Li Nucleus

The transverse electron scattering form factors have been studied for low –lying excited states of 7Li nucleus. These states are specified by J? T= (0.478MeV), (4.63MeV) and (6.68MeV). The transitions to these states are taking place by both isoscalar and isovector components. These form factors have been analyzed in the framework of the multi-nucleon configuration mixing of harmonic oscillator shell model with size parameter brms=1.74fm. The universal two-body of Cohen-Kurath is used to generate the 1p-shell wave functions. The core polarization effects are included in the calculations through effective g-factors and resolved many discrepancies with experiments. A higher configuration effect outside the 1p-shell model space, such as the 2p-shell, enhances the form factors for q-values and reproduces the data. The present results are compared with other theoretical models. PACS: 25.30.Bf Elastic electron scattering - 25.30.Dh Inelastic electron scattering to specific states – 21.60.Cs Shell model – 27.20. +n 5? A ?19

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Dec 01 2010
Journal Name
Iraqi Journal Of Physics
The Electro-Excitation Form Factors of 7Li Nucleus with Exact Center of Mass Correction

The inelastic longitudinal electron scattering form factors are calculated for the low-lying excited states of 7Li {the first excited state 2121TJ (0.478 MeV) and the second excited state 2127TJ (4.63 MeV)}. The exact value of the center of mass correction in the translation invariant shell model (TISM) has been included and gives good results. A higher 2p-shell configuration enhances the form factors for high q-values and resolves many discrepancies with the experiments. The data are well described when the core polarization (CP) effects are included through effective nucleon charge. The results are compared with other theoretical models.
Keyword: 7Li inelastic electron scattering form factors calculated with exact

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 10 2019
Journal Name
Iraqi Journal Of Physics
Matter density distribution and longitudinal form factors for the ground and excited states of 17Ne exotic nucleus

The two-frequency shell model approach is used to calculate the
ground state matter density distribution and the corresponding root
mean square radii of the two-proton17Ne halo nucleus with the
assumption that the model space of 15O core nucleus differ from the
model space of extra two loosely bound valence protons. Two
different size parameters bcore and bhalo of the single particle wave
functions of the harmonic oscillator potential are used. The
calculations are carried out for different configurations of the outer
halo protons in 17Ne nucleus and the structure of this halo nucleus
shows that the dominant configuration when the two halo protons in
the 1d5/2 orbi

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Feb 18 2019
Journal Name
Iraqi Journal Of Physics
Elastic transverse electron scattering form factors of 11Li exotic nucleus

        The elastic transverse electron scattering form factors have been studied for the 11Li   nucleus using the Two- Frequency Shell Model (TFSM) approach. The single-particle wave functions of harmonic-oscillator (HO) potential are used with two different oscillator parameters bcore and bhalo. According to this model, the core nucleons of 9Li nucleus are assumed to move in the model space of spsdpf. The outer halo (2-neutron) in 11Li is assumed to move in the pure 1p1/2, 1d5/2, 2s1/2 orbit. The shell model calculations are carried ou

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Jan 13 2019
Journal Name
Iraqi Journal Of Physics
Inelastic longitudinal electron scattering C42 form factors in42Ti nucleus

Inelastic longitudinal electron scattering form factors for second
excited state C42 in 42Ti nucleus have been calculated using shell
model theory. Fp shell model space with configuration (1f7/2 2p3/2
1f5/2 2p1/2) has been adopted in order to distribute the valence
particles (protons and neutrons) outside an inert core 40Ca. Modern
model space effective interactions like FPD6 and GXPF1 have been
used to generate model space vectors and harmonic oscillator wave
function as a single particle wave function. Discarder space (core
orbits + higher orbits) has been included in (core polarization effect)
as a first order correction in microscopic theory to measure the
interested multipole form factors via the model

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Feb 25 2019
Journal Name
Iraqi Journal Of Physics
Density distributions and form factors of the exotic 8B nucleus

Results of charge, neutron and matter densities and related form factors for one- proton halo nucleus 8B are presented using a two- frequency shell model approach. We choose a model space for the core of 7Be different from that of the extra one valence proton. One configuration is assumed for the outer proton to be in 1p1/2 - shell. The results of the matter density distributions are compared with those fitted to the experimental data. The calculated proton and matter density distributions of this exotic nucleus exhibit a long tail behavior, which is considered as a distinctive feature of halo nuclei. Elastic electron scattering form factors of this exotic nucleus are also studied. The effects of

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Dec 01 2009
Journal Name
Iraqi Journal Of Physics
The Calculation of the Charge Density Distributions and the Longitudinal Form Factors of 10 B Nucleus by Using the Occupation Numbers of the States

The charge density distributions of 10 B nucleus are calculated using the
harmonic oscillator wave functions. Elastic and inelastic electron scattering
longitudinal form factors have been calculated for the similar parity states of 10B
nucleus where a core of 4He is assumed and the remaining particles are
distributed over 3/ 2 1p and 1/ 2 1p orbits which form the model space.
Core-polarization effects are taken into account. Core-polarization effects are
calculated by using Tassie model and gives good agreement with the measured
data.

View Publication Preview PDF
Publication Date
Sun Jan 13 2019
Journal Name
Iraqi Journal Of Physics
Shell model and Hartree-Fock calculations of electron scattering form factors for 25Mg nucleus

Shell model and Hartree-Fock calculations have been adopted to study the elastic and inelastic electron scattering form factors for 25Mg nucleus. The wave functions for this nucleus have been utilized from the shell model using USDA two-body effective interaction for this nucleus with the sd shell model space. On the other hand, the SkXcsb Skyrme parameterization has been used within the Hartree-Fock method to get the single-particle potential which is used to calculate the single-particle matrix elements. The calculated form factors have been compared with available experimental data.

Crossref
View Publication Preview PDF
Publication Date
Sun Jan 13 2019
Journal Name
Iraqi Journal Of Physics
Core-polarization effect in longitudinal electron scattering form factors of 65Cu nucleus

Inelastic longitudinal electron scattering form factors to 2+ and 4+ states in 65Cu nucleus has been calculated in the (2p3/2 1f 5/2 2p1/2) shell model space with the F5PVH effective interaction. The harmonic oscillator potential has been applied to calculate the wave functions of radial single-particle matrix elements. Two shell model codes, CP and NUSHELL are used to obtain results. The form factor of inelastic electron scattering to 1/21−, 1/22−, 3/22−, 3/23−, 5/21−, 5/22− and 7/2- states and finding the transition probabilities B (C2) (in units of e2 fm4) for these transitions and B (C4) (in units of e2 fm8) for the transition 7/2-, and comparing them with experimental data. Both the form factors and reduced transition pr

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Jan 26 2024
Journal Name
Iraqi Journal Of Science
Longitudinal and Transverse Electron Scattering Form Factors for 13C Nucleus with Core-Polarization Effects

Inelastic electron scattering have been studied for (3.68 )
2
1
2
3
MeV

,
(7.55 )
2
1
2
5
MeV

(15.11 )
2
3
2
3
MeV

states in the 13C nucleus. 4He is considered as an inert core with
nine nucleons out of it (the model space of nucleus). Form factors are calculated by
using Cohen-Kurath interaction for 1p-shell model space with Modified Surface
Delta Interaction (MSDI) as a residual interaction for higher configuration. The
study of core-polarization effects on the form factors is based on microscopic
theory, which combines shell model wave functions and configurations with higher
energy as the first order perturbation. The radial wave functions

... Show More
View Publication Preview PDF
Publication Date
Thu Nov 08 2018
Journal Name
Chemistry – A European Journal
Magnetic Shielding, Aromaticity, Antiaromaticity and Bonding in the Low‐Lying Electronic States of S <sub>2</sub> N <sub>2</sub>

Aromaticity, antiaromaticity and chemical bonding in the ground (S0), first singlet excited (S1) and lowest triplet (T1) electronic states of disulfur dinitride, S2N2, were investigated by analysing the isotropic magnetic shielding, σiso(r), in the space surrounding the molecule for each electronic state. The σiso(r) values were calculated by state-optimized CASSCF/cc-pVTZ wave functions with 22 electrons in 16 orbitals constructed from gauge-including atomic orbitals (GIAOs). The S1 and T1 electronic states were confirmed as 11Au and 13B3u, respectively, through linear response CC3/aug-cc-pVTZ calculations of the vertical excitation energies for eight singlet (S1–S8) and eight triplet (T1–T8) electronic states. The aromaticities of S

... Show More
Scopus (20)
Crossref (18)
Scopus Clarivate Crossref
View Publication