Preferred Language
Articles
/
ijp-874
The Calculation of the Charge Density Distributions and the Longitudinal Form Factors of 10 B Nucleus by Using the Occupation Numbers of the States
...Show More Authors

The charge density distributions of 10 B nucleus are calculated using the
harmonic oscillator wave functions. Elastic and inelastic electron scattering
longitudinal form factors have been calculated for the similar parity states of 10B
nucleus where a core of 4He is assumed and the remaining particles are
distributed over 3/ 2 1p and 1/ 2 1p orbits which form the model space.
Core-polarization effects are taken into account. Core-polarization effects are
calculated by using Tassie model and gives good agreement with the measured
data.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Apr 28 2022
Journal Name
Iraqi Journal Of Science
The calculation of the charge density distributions of the 1f-2p shell nuclei using the occupation numbers of the states
...Show More Authors

The charge density distributions (CDD) and the elastic electron scattering form factors, F(q), of the ground state for some 1f-2p shell nuclei, such as 74Ge, 76Ge, 78Se and 80Se nuclei have been calculated based on the use of occupation numbers of the states and the single particle wave functions of the harmonic oscillator potential with size parameters chosen to reproduce the observed root mean square charge radii for all considered nuclei. It is found that introducing additional parameters, namely β1 and β2 which reflect the difference of the occupation numbers of the states from the prediction of the simple shell model leads to a remarkable agreement between the calculated and experimental results of the charge density distributions

... Show More
View Publication Preview PDF
Publication Date
Mon Feb 25 2019
Journal Name
Iraqi Journal Of Physics
Density distributions and form factors of the exotic 8B nucleus
...Show More Authors

Results of charge, neutron and matter densities and related form factors for one- proton halo nucleus 8B are presented using a two- frequency shell model approach. We choose a model space for the core of 7Be different from that of the extra one valence proton. One configuration is assumed for the outer proton to be in 1p1/2 - shell. The results of the matter density distributions are compared with those fitted to the experimental data. The calculated proton and matter density distributions of this exotic nucleus exhibit a long tail behavior, which is considered as a distinctive feature of halo nuclei. Elastic electron scattering form factors of this exotic nucleus are also studied. The effects of

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Feb 10 2019
Journal Name
Iraqi Journal Of Physics
Matter density distribution and longitudinal form factors for the ground and excited states of 17Ne exotic nucleus
...Show More Authors

The two-frequency shell model approach is used to calculate the
ground state matter density distribution and the corresponding root
mean square radii of the two-proton17Ne halo nucleus with the
assumption that the model space of 15O core nucleus differ from the
model space of extra two loosely bound valence protons. Two
different size parameters bcore and bhalo of the single particle wave
functions of the harmonic oscillator potential are used. The
calculations are carried out for different configurations of the outer
halo protons in 17Ne nucleus and the structure of this halo nucleus
shows that the dominant configuration when the two halo protons in
the 1d5/2 orbi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Mar 30 2023
Journal Name
Iraqi Journal Of Science
Elastic Electron Scattering Form Factors and Charge Densities for Some Nuclei in 2s-1d Shell Using the Effect of Occupation Numbers
...Show More Authors

Elastic electron scattering form factors, charge density distributions and charge,
neutron and matter root mean square (rms) radii for P
24
PMg, P
28
PSi and P
32
PS nuclei are
studied using the effect of occupation numbers. Single-particle radial wave functions
of harmonic-oscillators (HO) potential are used. In general, the results of elastic
charge form factors showed good agreement with experimental data. The occupation
numbers are taken to reproduce the quantities mentioned above. The inclusion of
occupation numbers enhances the form factors to become closer to the data. For the
calculated charge density distributions, the results show good agreement with
experimental data except the fail to

... Show More
View Publication Preview PDF
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Science
Investigation of Ground Density Distributions and Charge Form Factors for 14,16,18,20,22N using Cosh Potential
...Show More Authors

     The bound radial wave functions of Cosh potential which are the solutions to the radial part of Schrodinger equation are solved numerically and used to compute the size radii; i.e., the root-mean square proton, neutron, charge and matter radii, ground density distributions and elastic electron scattering charge form factors for nitrogen isotopes 14,16,18,20,22N. The parameters of such potential for the isotopes under study have been opted so as to regenerate the experimental last single nucleon binding energies on Fermi's level and available experimental size radii as well.

View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Jan 08 2019
Journal Name
Iraqi Journal Of Physics
Charge density distributions and electron scattering form factors of 19F, 27Al and 25Mg nuclei
...Show More Authors

An effective two-body density operator for point nucleon system folded with two-body correlation functions, which take account of the effect of the strong short range repulsion and the strong tensor force in the nucleon-nucleon forces, is produced and used to derive an explicit form for ground state two-body charge density distributions (2BCDD's) and elastic electron scattering form factors F (q) for 19F, 27Al and 25Mg nuclei. It is found that the inclusion of the two-body short range correlations (SRC) has the feature of reducing the central part of the 2BCDD's significantly and increasing the tail part of them slightly, i.e. it tends to increase the probability of transferring the protons from the central region of the nucleus towards

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Feb 03 2019
Journal Name
Iraqi Journal Of Physics
Charge density distributions and electron scattering form factors of 25Mg, 27Al and 29Si nuclei
...Show More Authors

An effective two-body density operator for point nucleon system
folded with the tenser force correlations( TC's), is produced and used
to derive an explicit form for ground state two-body charge density
distributions (2BCDD's) applicable for 25Mg, 27Al and 29Si nuclei. It is
found that the inclusion of the two-body TC's has the feature of
increasing the central part of the 2BCDD's significantly and reducing
the tail part of them slightly, i.e. it tends to increase the probability of
transferring the protons from the surface of the nucleus towards its
centeral region and consequently makes the nucleus to be more rigid
than the case when there is no TC's and also leads to decrease the
1/ 2
r 2 of the nucleu

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Apr 28 2022
Journal Name
Iraqi Journal Of Science
Charge density distributions and electron scattering form factors of 19F, 22Ne and 26Mg nuclei
...Show More Authors

An effective two-body density operator for point nucleon system folded with the
tenser force correlations ( TC's), is produced and used to derive an explicit form for
ground state two-body charge density distributions (2BCDD's) applicable for
19F,22Ne and 26Mg nuclei. It is found that the inclusion of the two-body TC's has the
feature of increasing the central part of the 2BCDD's significantly and reducing the
tail part of them slightly, i.e. it tends to increase the probability of transferring the
protons from the surface of the nucleus towards its centeral region and consequently
makes the nucleus to be more rigid than the case when there is no TC's and also
leads to decrease the
1/ 2
2 r of the nucleus. I

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 07 2010
Journal Name
Baghdad Science Journal
The Electro-Excitation Form Factors for Low-Lying States of 7Li Nucleus
...Show More Authors

The transverse electron scattering form factors have been studied for low –lying excited states of 7Li nucleus. These states are specified by J? T= (0.478MeV), (4.63MeV) and (6.68MeV). The transitions to these states are taking place by both isoscalar and isovector components. These form factors have been analyzed in the framework of the multi-nucleon configuration mixing of harmonic oscillator shell model with size parameter brms=1.74fm. The universal two-body of Cohen-Kurath is used to generate the 1p-shell wave functions. The core polarization effects are included in the calculations through effective g-factors and resolved many discrepancies with experiments. A higher configuration effect outside the 1p-shell model space, such

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 26 2024
Journal Name
Iraqi Journal Of Science
Calculation of The Nuclear Matter Density Distributions and Form Factors For The Ground State of P 12 PBe and P 14 PBe Nuclei
...Show More Authors

The ground state charge, neutron and matter densities for two-neutron halo nuclei P
12
PBe
and P
14
PBe are calculated within a two- frequency shell model approach. In the description of
the halo nuclei it is important to take into account a model space for P
10
PBe and P
12
PBe different
from the two halo neutrons which have to be treated separately in order to explain their
properties. The structures of the halo P
12
PBe and P
14
PBe nuclei show that the dominant
configurations when the two halo neutrons distributed over the 1d shell orbits. Elastic
Coulomb scattering form factors of these two exotic nuclei are also studied through the
combination of the density distributions of

... Show More
View Publication Preview PDF