Preferred Language
Articles
/
ijp-168
Core-polarization effect in longitudinal electron scattering form factors of 65Cu nucleus

Inelastic longitudinal electron scattering form factors to 2+ and 4+ states in 65Cu nucleus has been calculated in the (2p3/2 1f 5/2 2p1/2) shell model space with the F5PVH effective interaction. The harmonic oscillator potential has been applied to calculate the wave functions of radial single-particle matrix elements. Two shell model codes, CP and NUSHELL are used to obtain results. The form factor of inelastic electron scattering to 1/21−, 1/22−, 3/22−, 3/23−, 5/21−, 5/22− and 7/2- states and finding the transition probabilities B (C2) (in units of e2 fm4) for these transitions and B (C4) (in units of e2 fm8) for the transition 7/2-, and comparing them with experimental data. Both the form factors and reduced transition probabilities with core-polarization effects gave a reasonable description of the experimental data.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 26 2024
Journal Name
Iraqi Journal Of Science
Longitudinal and Transverse Electron Scattering Form Factors for 13C Nucleus with Core-Polarization Effects

Inelastic electron scattering have been studied for (3.68 )
2
1
2
3
MeV

,
(7.55 )
2
1
2
5
MeV

(15.11 )
2
3
2
3
MeV

states in the 13C nucleus. 4He is considered as an inert core with
nine nucleons out of it (the model space of nucleus). Form factors are calculated by
using Cohen-Kurath interaction for 1p-shell model space with Modified Surface
Delta Interaction (MSDI) as a residual interaction for higher configuration. The
study of core-polarization effects on the form factors is based on microscopic
theory, which combines shell model wave functions and configurations with higher
energy as the first order perturbation. The radial wave functions

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 13 2019
Journal Name
Iraqi Journal Of Physics
Inelastic longitudinal electron scattering C42 form factors in42Ti nucleus

Inelastic longitudinal electron scattering form factors for second
excited state C42 in 42Ti nucleus have been calculated using shell
model theory. Fp shell model space with configuration (1f7/2 2p3/2
1f5/2 2p1/2) has been adopted in order to distribute the valence
particles (protons and neutrons) outside an inert core 40Ca. Modern
model space effective interactions like FPD6 and GXPF1 have been
used to generate model space vectors and harmonic oscillator wave
function as a single particle wave function. Discarder space (core
orbits + higher orbits) has been included in (core polarization effect)
as a first order correction in microscopic theory to measure the
interested multipole form factors via the model

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Jul 01 2022
Journal Name
Iraqi Journal Of Science
Core Polarization Effects on the Inelastic Longitudinal Electron Scattering Form Factors of Ti 48,50 and Cr 52,54 nuclei

In this paper, inelastic longitudinal electron scattering form factors C2 and C4
transitions have been studied in Ti 48,50
and Cr 52,54
nuclei with the aid of shell
model calculations. The core polarization transition density was evaluated by
adopting the shape of Tassie model togther with the derived form of the ground state
two-body charge density distributions (2BCDD's). The following transitions have
been investigated; 0 2 2 2 1 1
   and 0 2 4 2 1 1
   of Ti 48 , 0 3 2 3 1 1
   and
0 3 4 3 1 1
   of Ti 50 , 0 2 2 2 1 1
   and 0 2 4 2 1 1
   of Cr 52 and
0 3 2 3 1 1
   and 0 3 4 3 1 1
   of Cr 54 nuclei. It is fou

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 03 2019
Journal Name
Iraqi Journal Of Physics
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Mon Feb 18 2019
Journal Name
Iraqi Journal Of Physics
Elastic transverse electron scattering form factors of 11Li exotic nucleus

        The elastic transverse electron scattering form factors have been studied for the 11Li   nucleus using the Two- Frequency Shell Model (TFSM) approach. The single-particle wave functions of harmonic-oscillator (HO) potential are used with two different oscillator parameters bcore and bhalo. According to this model, the core nucleons of 9Li nucleus are assumed to move in the model space of spsdpf. The outer halo (2-neutron) in 11Li is assumed to move in the pure 1p1/2, 1d5/2, 2s1/2 orbit. The shell model calculations are carried ou

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Dec 08 2023
Journal Name
Iraqi Journal Of Science
Inelastic longitudinal electron scattering C2 form factors in 48Ca nucleus by using sigma meson as a residual interaction.

Inelastic longitudinal electron scattering C2 form factor in 48Ca has been utilized
to study the effects of fitting parameters on the sigma meson exchange type
potentials as a residual interaction. By coupling the core particles with model space
particle, where the latter used as an active part of residual interaction in the so called
core polarization process, it is included as a correction with first order perturbation
theory to the main calculation of model space, and the excitation energy has been
carried out with ( ). A model space wave vectors are generated in full fp shell
model with FPD6 as effective interaction with mixing configuration technique and
harmonic oscillator as a single particle wave function.

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2011
Journal Name
Iraqi Journal Of Physics
Calculation of the longitudinal electron scattering form factors for the 2s-1d shell nuclei

An Expression for the transition charge density is investigated
where the deformation in nuclear collective modes is taken into
consideration besides the shell model transition density. The
inelastic longitudinal C2 and C4 form factors are calculated using
this transition charge density for the Ne Mg 20 24 , , Si 28 and S 32
nuclei. In this work, the core polarization transition density is
evaluated by adopting the shape of Tassie model togther with the
derived form of the ground state two-body charge density
distributions (2BCDD's). It is noticed that the core polarization
effects which represent the collective modes are essential in
obtaining a remarkable agreement between the calculated inelastic
longi

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 01 2009
Journal Name
Iraqi Journal Of Physics
Calculation of the Longitudinal Electron Scattering Form Factors for the 2s-1d Shell Nuclei

Inelastic longitudinal electron scattering form factors have been calculated for isoscaler transition
T = 0 of the (0+ ®2+ ) and (0+ ®4+ ) transitions for the 20Ne ,24Mg and 28Si nuclei. Model
space wave function defined by the orbits 1d5 2 ,2s1 2 and 1d3 2 can not give reasonable result for
the form factor. The core-polarization effects are evaluated by adopting the shape of the Tassie-
Model, together with the calculated ground Charge Density Distribution CDD for the low mass 2s-1d
shell nuclei using the occupation number of the states where the sub-shell 2s is included with an
occupation number of protons (a ) .

View Publication Preview PDF
Publication Date
Sun Jan 13 2019
Journal Name
Iraqi Journal Of Physics
Shell model and Hartree-Fock calculations of electron scattering form factors for 25Mg nucleus

Shell model and Hartree-Fock calculations have been adopted to study the elastic and inelastic electron scattering form factors for 25Mg nucleus. The wave functions for this nucleus have been utilized from the shell model using USDA two-body effective interaction for this nucleus with the sd shell model space. On the other hand, the SkXcsb Skyrme parameterization has been used within the Hartree-Fock method to get the single-particle potential which is used to calculate the single-particle matrix elements. The calculated form factors have been compared with available experimental data.

Crossref
View Publication Preview PDF
Publication Date
Sun Jul 02 2023
Journal Name
Iraqi Journal Of Science
Elastic and Inelastic Magnetic Electron Scattering Form Factors of Neutron- Rich 19C Exotic Nucleus

The elastic magnetic electron scattering form factors and the magnetic dipole moments have been studied for the ground state of 19C (halo) (JπT= 1/2+ 7/2) nucleus carried out using psd-shell Millener-Kurath (PSDMK) interactions. The single-particle wave functions of harmonic-oscillator (HO) potential are used with two different oscillator parameters bcore and bhalo. According to this interaction, the core nucleons of 18C nucleus are assumed to move in the model space of spd. The outer halo (1-neutron) in 19C is assumed to move in the pure 2s1/2 orbit. The elastic magnetic electron scattering of the stable 13C and exotic 19C nuclei are investigated through Plane Wave Born Approximation (PWBA). It is found that the difference between the

... Show More
View Publication Preview PDF