In this paper, we introduce the concept of a quasi-radical semi prime submodule. Throughout this work, we assume that is a commutative ring with identity and is a left unitary R- module. A proper submodule of is called a quasi-radical semi prime submodule (for short Q-rad-semiprime), if for , ,and then . Where is the intersection of all prime submodules of .
In this paper we give many connections between essentially quasi-Dedekind (quasi-
Dedekind) modules and other modules such that Baer modules, retractable modules,
essentially retractable modules, compressible modules and essentially compressible
modules where an R-module M is called essentially quasi-Dedekind (resp. quasi-
Dedekind) if, Hom(M N ,M ) 0 for all N ≤e M (resp. N ≤ M). Equivalently, a
module M is essentially quasi-Dedekind (resp. quasi-Dedekind) if, for each
f End (M) R , Kerf ≤ e M implies f = 0 (resp. f 0 implies ker f 0 ).
In this paper we study necessary and sufficient conditions for a reverse- centralizer of a semiprime ring R to be orthogonal. We also prove that a reverse- centralizer T of a semiprime ring R having a commuting generalized inverse is orthogonal
In the present paper, the concepts of a quasi-metric space, quasi-Banach space
have been introduced. We prove some facts which are defined on these spaces and
define some polynomials on quasi-Banach spaces and studied their dynamics, such
as, quasi cyclic and quasi hypercyclic. We show the existence of quasi chaotic in the
sense of Devaney (quasi D-chaotic) polynomials on quasi Banach space of qsummable
sequences lq , 0<q<1 such polynomials P is defined by P((xi)i)=(p(xi+m))i
where p:CC, p(0) = 0. In general we also prove that P is quasi chaotic in the sense
of Auslander and Yorke (quasi AY-chaotic) if and only if 0 belong to the Julia set of
p, mN. And then we prove that if the above polynomial P o
Let R be a commutative ring with unity and an R-submodule N is called semimaximal if and only if
the sufficient conditions of F-submodules to be semimaximal .Also the concepts of (simple , semisimple) F- submodules and quotient F- modules are introduced and given some properties .
In this paper, we introduce and study the essential and closed fuzzy submodules of a fuzzy module X as a generalization of the notions of essential and closed submodules. We prove many basic properties of both concepts.
The main goal of this paper is to dualize the two concepts St-closed submodule and semi-extending module which were given by Ahmed and Abbas in 2015. These dualizations are called CSt-closed submodule and cosemi-extending mod- ule. Many important properties of these dualizations are investigated, as well as some others useful results which mentioned by those authors are dualized. Furthermore, the relationships of cosemi-extending and other related modules are considered.
In this work, we introduced the Jacobson radical (shortly Rad (Ș)) of the endomorphism semiring Ș = ( ), provided that is principal P.Q.- injective semimodule and some related concepts, we studied some properties and added conditions that we needed. The most prominent result is obtained in section three
-If is a principal self-generator semimodule, then (ȘȘ) = W(Ș).
Subject Classification: 16y60
This study was carried out to evaluate the antioxidant activity of Iraqi sumac seeds (Rhus coriaria. L) (Anacardiaceae). Total phenolic compounds and flavoniods were determined in three different sumac seed extracts (SSE) (aqueous,ethanolic and methanolic extract). For extraction Antioxidant activity of SSE were evaluated by various antioxidant assays, including total antioxidant capacity, reducing power,by using 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging, nitric oxide scavenging, Hydroxyl radical scavenging, and metal ion chelating activities. These various antioxidant activities were compared with ascorbic acid as a standard antioxidant.The results showed that the three(SSE), contained large amounts of phenolic and flavonio
... Show MoreIn this paper, we will generalized some results related to centralizer concept on
prime and semiprime Γ-rings of characteristic different from 2 .These results
relating to some results concerning left centralizer on Γ-rings.
In this paper we introduce the definition of Lie ideal on inverse semiring and we generalize some results of Herstein about Lie structure of an associative rings to inverse semirings.