In this paper we introduce the definition of Lie ideal on inverse semiring and we generalize some results of Herstein about Lie structure of an associative rings to inverse semirings.
Let S be a prime inverse semiring with center Z(S). The aim of this research is to prove some results on the prime inverse semiring with (α, β) – derivation that acts as a homomorphism or as an anti- homomorphism, where α, β are automorphisms on S.
Let S be an inverse semiring, and U be an ideal of S. In this paper, we introduce the concept of U-S Jordan homomorphism of inverse semirings, and extend the result of Herstein on Jordan homomorphisms in inverse semirings.
This paper develops the work of Mary Florence et.al. on centralizer of semiprime semirings and presents reverse centralizer of semirings with several propositions and lemmas. Also introduces the notion of dependent element and free actions on semirings with some results of free action of centralizer and reverse centralizer on semiprime semirings and some another mappings.
In this paper the centralizing and commuting concerning skew left -derivations and skew left -derivations associated with antiautomorphism on prime and semiprime rings were studied and the commutativity of Lie ideal under certain conditions were proved.
This paper develops the work of Mary Florence et.al. on centralizer of semiprime semirings and presents reverse centralizer of semirings with several propositions and lemmas. Also introduces the notion of dependent element and free actions on semirings with some results of free action of centralizer and reverse centralizer on semiprime semirings and some another mappings.
Let M be a prime Γ-ring satisfying abc abc for all a,b,cM and
, with center Z, and U be a Lie (Jordan) ideal. A mapping d :M M
is called Γ- centralizing if u d u Z [ , ( )] for all uU and .In this paper
, we studied Lie and Jordan ideal in a prime Γ - ring M together with Γ -
centralizing derivations on U.
The purpose of this paper is to prove the following result : Let R be a 2-torsion free prime *-ring , U a square closed *-Lie ideal, and let T: RR be an additive mapping. Suppose that 3T(xyx) = T(x) y*x* + x*T(y)x* + x*y*T(x) and x*T(xy+yx)x* = x*T(y)x*2 + x*2T(y)x* holds for all pairs x, y U , and T(u) U, for all uU, then T is a reverse *-centralizer.
Let R be a commutative ring with unity and let M be a unitary R-module. In this paper we study fully semiprime submodules and fully semiprime modules, where a proper fully invariant R-submodule W of M is called fully semiprime in M if whenever XXïƒW for all fully invariant R-submodule X of M, implies XïƒW. M is called fully semiprime if (0) is a fully semiprime submodule of M. We give basic properties of these concepts. Also we study the relationships between fully semiprime submodules (modules) and other related submodules (modules) respectively.
In this paper, the structure of and have been introduced and studied. We also obtain that a is of a if and only if there exists an on such that . In addition, we obtain that of if and only if there is an on such that , where are subspaces of with eigenvalues 1 and −1, respectively. We also find t that the existence of on implies that there exists a compatible under appropriate condition.
In this paper we study necessary and sufficient conditions for a reverse- centralizer of a semiprime ring R to be orthogonal. We also prove that a reverse- centralizer T of a semiprime ring R having a commuting generalized inverse is orthogonal