Recently, new generalizations have been presented for the hyponormal operators, which are (N, k)-hyponormal operators and (h, M)-hyponormal operators. Some properties of these concepts have also been proved, one of these properties is that the product of two (N, k)-hyponormal operator is also (N, k)- hyponormal operator and the product of two (h, M)-hyponormal operators is (h, M)-hyponormal operator. In our research, we will reprove these properties by using the (l,m)-commuting operator equations, in addition to that we will solve the (l, m)-commuting operator equations for (N, k)-hyponormal operators and (h, M)-hyponormal operators.
New class A^* (a,c,k,β,α,γ,μ) is introduced of meromorphic univalent functions with positive coefficient f(z)=□(1/z)+∑_(n=1)^∞▒〖a_n z^n 〗,(a_n≥0,z∈U^*,∀ n∈ N={1,2,3,…}) defined by the integral operator in the punctured unit disc U^*={z∈C∶0<|z|<1}, satisfying |(z^2 (I^k (L^* (a,c)f(z)))^''+2z(I^k (L^* (a,c)f(z)))^')/(βz(I^k (L^* (a,c)f(z)))^''-α(1+γ)z(I^k (L^* (a,c)f(z)))^' )|<μ,(0<μ≤1,0≤α,γ<1,0<β≤1/2 ,k=1,2,3,… ) . Several properties were studied like coefficient estimates, convex set and weighted mean.
Let
In this study, the magic nuclei is divided into two groups, one of them is light group and the other is middle group, it was calculated shell corrections for all nuclei, and also it was concluded the relationship between cross sections for nuclear reactions ()α,n and the mass number (A) for all nuclei to incident neutrons (14.5 MeV). We found empirical equations to asymmetry parameter (N-Z)/A as function of mass number and for that two groups: for A=38 to A=40 light nuclei.()0534.10263.0+−=−AAZN for A=50 to A=89 middle nuclei. ()408.00151.00001.02−+=−AAAZN for A=90 to A=144 middle nuclei. ()0711.10221
Recently, numerous the generalizations of Hurwitz-Lerch zeta functions are investigated and introduced. In this paper, by using the extended generalized Hurwitz-Lerch zeta function, a new Salagean’s differential operator is studied. Based on this new operator, a new geometric class and yielded coefficient bounds, growth and distortion result, radii of convexity, star-likeness, close-to-convexity, as well as extreme points are discussed.
In this work, we study a new class of meromorphicmultivalent functions, defined by fractional differ-integral operator.We obtain some geometricproperties, such ascoefficient inequality, growth and distortion bounds, convolution properties, integral representation, radii of starlikeness, convexity, extreme pointsproperties, weighted mean and arithmetic meanproperties.
In any natural area or water body, evapotranspiration is one of the important outcomes in the water balance equation. As a significant method and depending on monthly average temperature, estimating of potential Evapotranspiration depending on Thornthwaite method was adopted in this research review. Estimate and discuss evapotranspiration by using Thornthwaite method is the main objectives of this research review with considerable details as well as compute potential evapotranspiration based on climatologically data obtained in Iraq. Temperature - evapotranspiration relationship can be estimated between those two parameters to reduce cost and time and facilitate calculation of water balance in lakes, river, and h
... Show MoreThis paper is concerned with the numerical blow-up solutions of semi-linear heat equations, where the nonlinear terms are of power type functions, with zero Dirichlet boundary conditions. We use explicit linear and implicit Euler finite difference schemes with a special time-steps formula to compute the blow-up solutions, and to estimate the blow-up times for three numerical experiments. Moreover, we calculate the error bounds and the numerical order of convergence arise from using these methods. Finally, we carry out the numerical simulations to the discrete graphs obtained from using these methods to support the numerical results and to confirm some known blow-up properties for the studied problems.
Medical image segmentation is a frequent processing step in image medical understanding and computer aided diagnosis. In this paper, development of range operator in image segmentation is proposed depending on dermatology infection. Three different block sizes have been utilized on the range operator and the developed ones to enhance the behavior of the segmentation process of medical images. To exploit the concept of range filtering, the extraction of the texture content of medical image is proposed. Experiment is conducted on different medical images and textures to prove the efficacy of our proposed filter was good results.
In this paper , an efficient new procedure is proposed to modify third –order iterative method obtained by Rostom and Fuad [Saeed. R. K. and Khthr. F.W. New third –order iterative method for solving nonlinear equations. J. Appl. Sci .7(2011): 916-921] , using three steps based on Newton equation , finite difference method and linear interpolation. Analysis of convergence is given to show the efficiency and the performance of the new method for solving nonlinear equations. The efficiency of the new method is demonstrated by numerical examples.