Recently, new generalizations have been presented for the hyponormal operators, which are (N, k)-hyponormal operators and (h, M)-hyponormal operators. Some properties of these concepts have also been proved, one of these properties is that the product of two (N, k)-hyponormal operator is also (N, k)- hyponormal operator and the product of two (h, M)-hyponormal operators is (h, M)-hyponormal operator. In our research, we will reprove these properties by using the (l,m)-commuting operator equations, in addition to that we will solve the (l, m)-commuting operator equations for (N, k)-hyponormal operators and (h, M)-hyponormal operators.
In this paper, a sufficient condition for stability of a system of nonlinear multi-fractional order differential equations on a finite time interval with an illustrative example, has been presented to demonstrate our result. Also, an idea to extend our result on such system on an infinite time interval is suggested.
The main goal of this paper is to study and discuss a new class of meromorphici "functions[ which are multivalent defined by [fractional calculus operators. Coefficients iestimates , radiisi of satarlikeness , convexityi and closed-to-iconvexity are studied. Also distortion iand closure theorems for the classi" , are considered.
The topological parameters of the metal-metal and metal-ligand bonding interactions in a trinuclear tetrahydrido cluster [(Cp*Co) (CpRu)2 (μ3-H) (μ-H)3]1 (Cp* = η5 -C5Me4Et), (Cp = η5 -C5Me5), was explored by using the Quantum Theory of Atoms-in-Molecules (QTAIM). The properties of bond critical points such as the bond delocalization indices δ (A, B), the electron density ρ(r), the local kinetic energy density G(r), the Laplacian of the electron density ∇2ρ(r), the local energy density H(r), the local potential energy density V(r) and ellipticity ε(r) are compared with data from earlier organometallic system studies. A comparison of the topological processes of different atom-atom interactions has become possible than
... Show MoreIn this research paper, we explain the use of the convexity and the starlikness properties of a given function to generate special properties of differential subordination and superordination functions in the classes of analytic functions that have the form in the unit disk. We also show the significant of these properties to derive sandwich results when the Srivastava- Attiya operator is used.
This paper examines a new nonlinear system of multiple integro-differential equations containing symmetric matrices with impulsive actions. The numerical-analytic method of ordinary differential equations and Banach fixed point theorem are used to study the existence, uniqueness and stability of periodic solutions of impulsive integro-differential equations with piecewise continuous functions. This study is based on the Hölder condition in which the ordering , and are real numbers between 0 and 1.
In this paper, we use the repeated corrected Simpson's 3/8 quadrature method for obtaining the numerical solutions of Fredholm linear integral equations of the second kind. This method is more accurately than the repeated corrected Trapezoidal method and the repeated Simpson's 3/8 method. To illustrate the accuracy of this method, we give a numerical example
Many of the dynamic processes in different sciences are described by models of differential equations. These models explain the change in the behavior of the studied process over time by linking the behavior of the process under study with its derivatives. These models often contain constant and time-varying parameters that vary according to the nature of the process under study in this We will estimate the constant and time-varying parameters in a sequential method in several stages. In the first stage, the state variables and their derivatives are estimated in the method of penalized splines(p- splines) . In the second stage we use pseudo lest square to estimate constant parameters, For the third stage, the rem
... Show MoreObject detection in real time is considered as a challenging problem. However, it is very important in a wide range of applications, especially in field of multimedia. The players and ball are the most important objects in soccer game videos and detecting them is a challenging task because of many difficulties, such as shadow and illumination, ball size, ball occluded by players or merged with lines, and similar appearance of players. To overcome these problems, we present a new system to detect the players and ball in real-time by using background subtraction and Sobel detection. The results were more accurate and approximately two times faster than those using only background subtraction.
In this paper, the computational method (CM) based on the standard polynomials has been implemented to solve some nonlinear differential equations arising in engineering and applied sciences. Moreover, novel computational methods have been developed in this study by orthogonal base functions, namely Hermite, Legendre, and Bernstein polynomials. The nonlinear problem is successfully converted into a nonlinear algebraic system of equations, which are then solved by Mathematica®12. The developed computational methods (D-CMs) have been applied to solve three applications involving well-known nonlinear problems: the Darcy-Brinkman-Forchheimer equation, the Blasius equation, and the Falkner-Skan equation, and a comparison between t
... Show MoreIn this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using