Recently, new generalizations have been presented for the hyponormal operators, which are (N, k)-hyponormal operators and (h, M)-hyponormal operators. Some properties of these concepts have also been proved, one of these properties is that the product of two (N, k)-hyponormal operator is also (N, k)- hyponormal operator and the product of two (h, M)-hyponormal operators is (h, M)-hyponormal operator. In our research, we will reprove these properties by using the (l,m)-commuting operator equations, in addition to that we will solve the (l, m)-commuting operator equations for (N, k)-hyponormal operators and (h, M)-hyponormal operators.
We study in this paper the composition operator that is induced by ?(z) = sz + t. We give a characterization of the adjoint of composiotion operators generated by self-maps of the unit ball of form ?(z) = sz + t for which |s|?1, |t|<1 and |s|+|t|?1. In fact we prove that the adjoint is a product of toeplitz operators and composition operator. Also, we have studied the compactness of C? and give some other partial results.
In this paper, we model the spread of coronavirus (COVID -19) by introducing stochasticity into the deterministic differential equation susceptible -infected-recovered (SIR model). The stochastic SIR dynamics are expressed using Itô's formula. We then prove that this stochastic SIR has a unique global positive solution I(t).The main aim of this article is to study the spread of coronavirus COVID-19 in Iraq from 13/8/2020 to 13/9/2020. Our results provide a new insight into this issue, showing that the introduction of stochastic noise into the deterministic model for the spread of COVID-19 can cause the disease to die out, in scenarios where deterministic models predict disease persistence. These results were also clearly ill
... Show MoreThe goal of this paper is to expose a new numerical method for solving initial value time-lag of delay differential equations by employing a high order improving formula of Euler method known as third order Euler method. Stability condition is discussed in detail for the proposed technique. Finally some examples are illustrated to verify the validity, efficiency and accuracy of the method.
The presented work includes the Homotopy Transforms of Analysis Method (HTAM). By this method, the approximate solution of nonlinear Navier- Stokes equations of fractional order derivative was obtained. The Caputo's derivative was used in the proposed method. The desired solution was calculated by using the convergent power series to the components. The obtained results are demonstrated by comparison with the results of Adomain decomposition method, Homotopy Analysis method and exact solution, as explained in examples (4.1) and (4.2). The comparison shows that the used method is powerful and efficient.
In this paper, the homotopy perturbation method is presented for solving the second kind linear mixed Volterra-Fredholm integral equations. Then, Aitken method is used to accelerate the convergence. In this method, a series will be constructed whose sum is the solution of the considered integral equation. Convergence of the constructed series is discussed, and its proof is given; the error estimation is also obtained. For more illustration, the method is applied on several examples and programs, which are written in MATLAB (R2015a) to compute the results. The absolute errors are computed to clarify the efficiency of the method.
Ruthenium-Ruthenium and Ruthenium–ligand interactions in the triruthenium "[Ru3(μ-H)(μ3-κ2-Hamphox-N,N)(CO)9]" cluster are studied at DFT level of theory. The topological indices are evaluated in term of QTAIM (quantum theory of atoms in molecule). The computed topological parameters are in agreement with related transition metal complexes documented in the research papers. The QTAIM analysis of the bridged core part, i.e., Ru3H, analysis shows that there is no bond path and bond critical point (chemical bonding) between Ru(2) and Ru(3). Nevertheless, a non-negligible delocalization index for this non-bonding interaction is calculated
... Show MoreIn this paper, we studied the travelling wave solving for some models of Burger's equations. We used sine-cosine method to solution nonlinear equation and we used direct solution after getting travelling wave equation.
This research includes the application of non-parametric methods in estimating the conditional survival function represented in a method (Turnbull) and (Generalization Turnbull's) using data for Interval censored of breast cancer and two types of treatment, Chemotherapy and radiation therapy and age is continuous variable, The algorithm of estimators was applied through using (MATLAB) and then the use average Mean Square Error (MSE) as amusement to the estimates and the results showed (generalization of Turnbull's) In estimating the conditional survival function and for both treatments ,The estimated survival of the patients does not show very large differences
... Show MoreIn this paper the oscillation criterion was investigated for all solutions of the third-order half linear neutral differential equations. Some necessary and sufficient conditions are established for every solution of (a(t)[(x(t)±p(t)x(?(t) ) )^'' ]^? )^'+q(t) x^? (?(t) )=0, t?t_0, to be oscillatory. Examples are given to illustrate our main results.
This paper concentrates on employing the -difference equations approach to prove another generating function, extended generating function, Rogers formula and Mehler’s formula for the polynomials , as well as thegenerating functions of Srivastava-Agarwal type. Furthermore, we establish links between the homogeneous -difference equations and transformation formulas.