Preferred Language
Articles
/
ijs-4099
Estimating the Reliability Function for Transmuted Pareto Distribution Using Simulation

     In this work, the methods (Moments, Modified Moments, L-Moments, Percentile, Rank Set sampling and Maximum Likelihood) were used to estimate the reliability function and the two parameters of the Transmuted Pareto (TP) distribution. We use simulation to generate the required data from three cases this indicates  sample size , and it replicates  for the real value for parameters, for reliability times values  we take .

Results were compared by using mean square error (MSE), the result appears as follows :

The best methods are Modified Moments, Maximum likelihood and L-Moments in first case, second case and third case respectively.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 01 2020
Journal Name
Baghdad Science Journal
Discussing Fuzzy Reliability Estimators of Function of Mixed Probability Distribution By Simulation

This paper deals  with constructing mixed probability distribution  from exponential with scale parameter (β) and also Gamma distribution with (2,β), and the mixed proportions are (  .first of all, the probability density function (p.d.f) and also cumulative distribution function (c.d.f) and also the reliability function are obtained. The parameters of mixed distribution, ( ,β)  are estimated by three different methods, which are  maximum likelihood, and  Moments method,as well proposed method (Differential Least Square Method)(DLSM).The comparison is done using simulation procedure, and all the results are explained in tables.

Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Jun 02 2019
Journal Name
Baghdad Science Journal
Estimating the Reliability Function of (2+1) Cascade Model

This paper discusses reliability R of the (2+1) Cascade model of inverse Weibull distribution. Reliability is to be found when strength-stress distributed is inverse Weibull random variables with unknown scale parameter and known shape parameter. Six estimation methods (Maximum likelihood, Moment, Least Square, Weighted Least Square, Regression and Percentile) are used to estimate reliability. There is a comparison between six different estimation methods by the simulation study by MATLAB 2016, using two statistical criteria Mean square error and Mean Absolute Percentage Error, where it is found that best estimator between the six estimators is Maximum likelihood estimation method.

Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Mon Mar 01 2010
Journal Name
Journal Of Economics And Administrative Sciences
Pais estimator for the reliability function of the Pareto model of Type I failure

In this paper an estimator of reliability function for the pareto dist. Of the first kind has been derived and then a simulation approach by Monte-Calro method was made to compare the Bayers estimator of reliability function and the maximum likelihood estimator for this function. It has been found that the Bayes. estimator was better than maximum likelihood estimator for all sample sizes using Integral mean square error(IMSE).

Crossref
View Publication Preview PDF
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
Reliability Estimation for the Exponential-Pareto Hybrid System

     The reliability of hybrid systems is important in modern technology, specifically in engineering and industrial fields; it is an indicator of the machine's efficiency and ability to operate without interruption for an extended period of time. It also allows for the evaluation of machines and equipment for planning and future development. This study looked at reliability of hybrid (parallel series) systems with asymmetric components using exponential and Pareto distributions. Several simulation experiments were performed to estimate the reliability function of these systems using the Maximum Likelihood method  and the Standard Bayes method  with a quadratic loss (QL) function and two priors: non-informative (Jeffery) and inform

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Mar 01 2010
Journal Name
Journal Of Economics And Administrative Sciences
Estimating the general exponential distribution parameters using the simulation method

The main aim of this paper is to study how the different estimators of the two unknown parameters (shape and scale parameter) of a generalized exponential distribution behave for different sample sizes and for different parameter values. In particular, 

. Maximum Likelihood, Percentile and Ordinary Least Square estimators had been implemented for different sample sizes (small, medium, and large) and assumed several contrasts initial values for the two parameters. Two indicators of performance Mean Square Error and Mean Percentile Error were used and the comparisons were carried out between different methods of estimation  by using monte carlo simulation technique .. It was obse

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Oct 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Between Shrinkage &Maximum likelihood Method For Estimation Parameters &Reliability Function With 3- Parameter Weibull Distribution By Using Simulation

The 3-parameter Weibull distribution is used as a model for failure since this distribution is proper when the failure rate somewhat high in starting operation and these rates will be decreased with increasing time .

In practical side a comparison was made between (Shrinkage and Maximum likelihood) Estimators for parameter and reliability function using simulation , we conclude that the Shrinkage estimators for parameters are better than maximum likelihood estimators but the maximum likelihood estimator for reliability function is the better using statistical measures (MAPE)and (MSE) and for different sample sizes.

Note:- ns : small sample ; nm=median sample

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Jun 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Semiparametric Bayesian Method with Classical Method for Estimating Systems Reliability using Simulation Procedure

               In this research, the semiparametric Bayesian method is compared with the classical  method to  estimate reliability function of three  systems :  k-out of-n system, series system, and parallel system. Each system consists of three components, the first one represents the composite parametric in which failure times distributed as exponential, whereas the second and the third components are nonparametric ones in which reliability estimations depend on Kernel method using two methods to estimate bandwidth parameter h method and Kaplan-Meier method. To indicate a better method for system reliability function estimation, it has be

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Reliability Estimation for the Exponential Distribution Based on Monte Carlo Simulation

        This Research deals with estimation the reliability function for two-parameters Exponential distribution, using different estimation methods ; Maximum likelihood, Median-First Order Statistics, Ridge Regression, Modified Thompson-Type Shrinkage and Single Stage Shrinkage methods. Comparisons among the estimators were made using Monte Carlo Simulation based on statistical indicter mean squared error (MSE) conclude that the shrinkage method perform better than the other methods

Crossref
View Publication Preview PDF
Publication Date
Sun Mar 01 2009
Journal Name
Journal Of Economics And Administrative Sciences
Simulation of five methods for parameter estimation and functionExponential distribution reliability
The estimation process is one of the pillars of the statistical inference process as well as the hypothesis test, and the assessment is based on the collection of information and conclusions about the teacher or the community's teachers on the basis of the result
... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
Bayesian Inference for Reliability Function of Gompertz Distribution
Abstract<p>In this paper, some Bayes estimators of the reliability function of Gompertz distribution have been derived based on generalized weighted loss function. In order to get a best understanding of the behaviour of Bayesian estimators, a non-informative prior as well as an informative prior represented by exponential distribution is considered. Monte-Carlo simulation have been employed to compare the performance of different estimates for the reliability function of Gompertz distribution based on Integrated mean squared errors. It was found that Bayes estimators with exponential prior information under the generalized weighted loss function were generally better than the estimators based o</p> ... Show More
Scopus (1)
Crossref (1)
Scopus Crossref
View Publication Preview PDF