Preferred Language
Articles
/
jeasiq-1210
Simulation of five methods for parameter estimation and functionExponential distribution reliability
The estimation process is one of the pillars of the statistical inference process as well as the hypothesis test, and the assessment is based on the collection of information and conclusions about the teacher or the community's teachers on the basis of the results obtained from the sample drawn from that society.
There are several methods for estimating the parameters of a society, such as the usual methods, which depend on the lack of advance information about the parameters to be estimated. There are other methods called the methods, which depend on the assumption that the parameter or parameters to be estimated is a random variable with a function.
In order to obtain capabilities with good characteristics, especially if there is more than one method for estimating a parameter, this leads to a study of the differentiation between these capabilities to choose the best ones, based on statistical criteria including bias, variance, average error squares, absolute average error, etc. The researcher analyzes the time of failure or the time it takes until the failure or the impact of life or the failure times of the machines, the probability distribution suitable for these cases is the exponential distribution or the distribution of Kama or distribution Wibel and others. Because of the importance of exponential distribution in the analysis of many survival and reliability times of many devices, we have seen the application of different methods of estimation to estimate the parameters of this distribution, which was addressed by many researchers including but not limited to Sinha & Sloan (1988), Vincenl (1997) and researcher Fernandez (2000), Alfawzan (2000), Nasser (2002), al-Bayati (2002), al-Nasser and al-Bayati (2004) and others.
 
Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jun 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between some well- Known methods to estimate the parameter of the proposed method of measurement and the reliability of the distribution function with two parameters Rally by simulation

 

 

Abstract

            Rayleigh distribution is one of the important distributions used for analysis life time data, and has applications in reliability study and physical interpretations. This paper introduces four different methods to estimate the scale parameter, and also estimate reliability function; these methods are Maximum Likelihood, and Bayes and Modified Bayes, and Minimax estimator under squared error loss function, for the scale and reliability function of the generalized Rayleigh distribution are obtained. The comparison is done through simulation procedure, t

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Sep 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of BASE methods with other methods for estimating the measurement parameter for WEBB distribution using simulations

  Weibull distribution is considered as one of the most widely  distribution applied in real life, Its similar to normal distribution in the way of applications, it's also considered as one of the distributions that can applied in many fields such as industrial engineering to represent replaced and manufacturing time ,weather forecasting, and other scientific uses in reliability studies and survival function in medical and communication engineering fields.

   In this paper, The scale parameter has been estimated for weibull distribution using Bayesian method based on Jeffery prior information as a first method , then enhanced by improving Jeffery prior information and then used as a se

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Dec 31 2019
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Different Estimators for the shape Parameter and the Reliability function of Kumaraswamy Distribution

In this paper, we used maximum likelihood method and the Bayesian method to estimate the shape parameter (θ), and reliability function (R(t)) of the Kumaraswamy distribution with two parameters l , θ (under assuming the exponential distribution, Chi-squared distribution and Erlang-2 type distribution as prior distributions), in addition to that we used method of moments for estimating the parameters of the prior distributions. Bayes

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Jun 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
"Comparison of Approximate Estimation Methods for Logistics Distribution Teachers"

The goal beyond this Research is to review methods that used to estimate Logistic distribution parameters. An exact estimators method which is the Moment method, compared with other approximate estimators obtained essentially from White approach such as: OLS, Ridge, and Adjusted Ridge as a suggested one to be applied with this distribution. The Results of all those methods are based on Simulation experiment, with different models and variety of  sample sizes. The comparison had been made with respect to two criteria: Mean Square Error (MSE) and Mean Absolute Percentage Error (MAPE).  

Crossref
View Publication Preview PDF
Publication Date
Tue Oct 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Between Shrinkage &Maximum likelihood Method For Estimation Parameters &Reliability Function With 3- Parameter Weibull Distribution By Using Simulation

The 3-parameter Weibull distribution is used as a model for failure since this distribution is proper when the failure rate somewhat high in starting operation and these rates will be decreased with increasing time .

In practical side a comparison was made between (Shrinkage and Maximum likelihood) Estimators for parameter and reliability function using simulation , we conclude that the Shrinkage estimators for parameters are better than maximum likelihood estimators but the maximum likelihood estimator for reliability function is the better using statistical measures (MAPE)and (MSE) and for different sample sizes.

Note:- ns : small sample ; nm=median sample

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Different Methods for Estimating Location Parameter & Scale Parameter for Extreme Value Distribution

      In this study, different methods were used for estimating location parameter  and scale parameter for extreme value distribution, such as maximum likelihood estimation (MLE) , method of moment  estimation (ME),and approximation  estimators based on percentiles which is called white method in estimation, as the extreme value distribution is one of exponential distributions. Least squares estimation (OLS) was used, weighted least squares estimation (WLS), ridge regression estimation (Rig), and adjusted ridge regression estimation (ARig) were used. Two parameters for expected value to the percentile  as estimation for distribution f

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Jun 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Semiparametric Bayesian Method with Classical Method for Estimating Systems Reliability using Simulation Procedure

               In this research, the semiparametric Bayesian method is compared with the classical  method to  estimate reliability function of three  systems :  k-out of-n system, series system, and parallel system. Each system consists of three components, the first one represents the composite parametric in which failure times distributed as exponential, whereas the second and the third components are nonparametric ones in which reliability estimations depend on Kernel method using two methods to estimate bandwidth parameter h method and Kaplan-Meier method. To indicate a better method for system reliability function estimation, it has be

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Oct 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of some of reliability and Hazard estimation methods for Rayleigh logarithmic distribution using simulation with application

The question of estimation took a great interest in some engineering, statistical applications, various applied, human sciences, the methods provided by it helped to identify and accurately the many random processes.

In this paper, methods were used through which the reliability function, risk function, and estimation of the distribution parameters were used, and the methods are (Moment Method, Maximum Likelihood Method), where an experimental study was conducted using a simulation method for the purpose of comparing the methods to show which of these methods are competent in practical application This is based on the observations generated from the Rayleigh logarithmic distribution (RL) with sample sizes

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Dec 06 2009
Journal Name
Baghdad Science Journal
Best estimation for the Reliability of 2-parameter Weibull Distribution

This Research Tries To Investigate The Problem Of Estimating The Reliability Of Two Parameter Weibull Distribution,By Using Maximum Likelihood Method, And White Method. The Comparison Is done Through Simulation Process Depending On Three Choices Of Models (?=0.8 , ß=0.9) , (?=1.2 , ß=1.5) and (?=2.5 , ß=2). And Sample Size n=10 , 70, 150 We Use the Statistical Criterion Based On the Mean Square Error (MSE) For Comparison Amongst The Methods.

Crossref
View Publication Preview PDF
Publication Date
Tue Sep 01 2020
Journal Name
Baghdad Science Journal
Bayesian and Non - Bayesian Inference for Shape Parameter and Reliability Function of Basic Gompertz Distribution

In this paper, some estimators of the unknown shape parameter and reliability function  of Basic Gompertz distribution (BGD) have been obtained, such as MLE, UMVUE, and MINMSE, in addition to estimating Bayesian estimators under Scale invariant squared error loss function assuming informative prior represented by Gamma distribution and non-informative prior by using Jefferys prior. Using Monte Carlo simulation method, these estimators of the shape parameter and R(t), have been compared based on mean squared errors and integrated mean squared, respectively

Scopus (2)
Scopus Clarivate Crossref
View Publication Preview PDF