Preferred Language
Articles
/
ijs-4099
Estimating the Reliability Function for Transmuted Pareto Distribution Using Simulation

     In this work, the methods (Moments, Modified Moments, L-Moments, Percentile, Rank Set sampling and Maximum Likelihood) were used to estimate the reliability function and the two parameters of the Transmuted Pareto (TP) distribution. We use simulation to generate the required data from three cases this indicates  sample size , and it replicates  for the real value for parameters, for reliability times values  we take .

Results were compared by using mean square error (MSE), the result appears as follows :

The best methods are Modified Moments, Maximum likelihood and L-Moments in first case, second case and third case respectively.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jul 28 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Estimation of the Two Parameters for Generalized Rayleigh Distribution Function Using Simulation Technique

     In this paper, suggested formula as well a conventional method for estimating the twoparameters (shape and scale) of the Generalized Rayleigh Distribution was proposed. For different sample sizes (small, medium, and large) and assumed several contrasts for the two parameters a percentile estimator was been used. Mean Square Error was implemented as an indicator of performance and comparisons of the performance have been carried out through data analysis and computer simulation between the suggested formulas versus the studied formula according to the applied indicator. It was observed from the results that the suggested method which was performed for the first time (as far as we know), had highly advantage than t

... Show More
View Publication Preview PDF
Publication Date
Mon Apr 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Bayesian Inference for the Parameter and Reliability Function of Basic Gompertz Distribution under Precautionary loss Function

     In this paper, some estimators for the unknown shape parameter and reliability function of Basic Gompertz distribution have been obtained, such as Maximum likelihood estimator and Bayesian estimators under Precautionary loss function using Gamma prior and Jefferys prior. Monte-Carlo simulation is conducted to compare mean squared errors (MSE) for all these estimators for the shape parameter and integrated mean squared error (IMSE's) for comparing the performance of the Reliability estimators. Finally, the discussion is provided to illustrate the results that summarized in tables.

Crossref
View Publication Preview PDF
Publication Date
Wed Jan 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Using Entropy and Linear Exponential Loos Function Estimators the Parameter and Reliability Function of Inverse Rayleigh Distribution

     This paper is devoted to compare the performance of non-Bayesian estimators represented by the Maximum likelihood estimator of the scale parameter and reliability function of inverse Rayleigh distribution with Bayesian estimators obtained under two types of loss function specifically; the linear, exponential (LINEX) loss function and Entropy loss function, taking into consideration the informative and non-informative priors. The  performance of such estimators assessed on the basis of mean square error (MSE) criterion. The Monte Carlo simulation experiments are conducted in order to obtain the required results. 

 

Crossref
View Publication Preview PDF
Publication Date
Sun Mar 04 2018
Journal Name
Iraqi Journal Of Science
Comparison between Bayesian and Maximum Likelihood Methods for parameters and the Reliability function of Perks Distribution

In this paper, we have derived Bayesian estimation for the parameters and reliability function of Perks distribution based on two different loss functions, Lindley’s approximation has been used to obtain those values. It is assumed that the parameter behaves as a random variable have a Gumbell Type P prior with non-informative is used. And after the derivation of mathematical formulas of those estimations, the simulation method was used for comparison depending on mean square error (MSE) values and integrated mean absolute percentage error (IMAPE) values respectively. Among of conclusion that have been reached, it is observed that, the LE-NR estimate introduced the best perform for estimating the parameter λ.

View Publication Preview PDF
Publication Date
Sat Jun 27 2020
Journal Name
Iraqi Journal Of Science
Bayesian Estimation for the Parameters and Reliability Function of Basic Gompertz Distribution under Squared Log Error Loss Function

In this paper, some estimators for the unknown shape parameters and reliability function of Basic Gompertz distribution were obtained, such as Maximum likelihood estimator and some Bayesian estimators under Squared log error loss function by using Gamma and Jefferys priors. Monte-Carlo simulation was conducted to compare the performance of all estimates of the shape parameter and Reliability function, based on mean squared errors (MSE) and integrated mean squared errors (IMSE's), respectively. Finally, the discussion is provided to illustrate the results that are summarized in tables.

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Dec 31 2019
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Different Estimators for the shape Parameter and the Reliability function of Kumaraswamy Distribution

In this paper, we used maximum likelihood method and the Bayesian method to estimate the shape parameter (θ), and reliability function (R(t)) of the Kumaraswamy distribution with two parameters l , θ (under assuming the exponential distribution, Chi-squared distribution and Erlang-2 type distribution as prior distributions), in addition to that we used method of moments for estimating the parameters of the prior distributions. Bayes

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Oct 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Estimating of Survival Function under Type One Censoring Sample for Mixture Distribution

In this article, it is interesting to estimate and derive the three parameters which contain two scales parameters and one shape parameter of a new mixture distribution for the singly type one censored data which is the branch of right censored sample. Then to define some special mathematical and statistical properties for this new mixture distribution which is considered one of the continuous distributions characterized by its flexibility. Next,  using maximum likelihood estimator method for singly type one censored data based on the Newton-Raphson matrix procedure to find and estimate values of these three parameter by utilizing the real data taken from the National Center for Research and Treatment of Hematology/University of Mus

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating the Survival Function and Failure Rate for the Exponentiated Expanded Power Function Distribution

 

     We have presented the distribution of the exponentiated expanded power function (EEPF) with four parameters, where this distribution was created by the exponentiated expanded method created by the scientist Gupta to expand the exponential distribution by adding a new shape parameter to the cumulative function of the distribution, resulting in a new distribution, and this method is characterized by obtaining a distribution that belongs for the exponential family. We also obtained a function of survival rate and failure rate for this distribution, where some mathematical properties were derived, then we used the method of maximum likelihood (ML) and method least squares developed  (LSD)

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
Comparison Different Estimation Method for Reliability Function of Rayleigh Distribution Based On Fuzzy Lifetime Data

    In this study, we present different methods of estimating fuzzy reliability of a two-parameter Rayleigh distribution via the maximum likelihood estimator, median first-order statistics estimator, quartile estimator, L-moment estimator, and mixed Thompson-type estimator. The mean-square error MSE as a measurement for comparing the considered methods using simulation through different values for the parameters and unalike sample sizes is used. The results of simulation show that the fuzziness values are better than the real values for all sample sizes, as well as  the fuzzy reliability at the estimation  of the Maximum likelihood Method, and Mixed Thompson Method perform better than the other methods in the sense of MSE, so that

... Show More
Scopus (3)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Choosing the best method for estimating the survival function of inverse Gompertz distribution by using Integral mean squares error (IMSE)

In this research , we study the inverse Gompertz distribution (IG) and estimate the  survival function of the distribution , and the survival function was evaluated using three methods (the Maximum likelihood, least squares, and percentiles estimators) and choosing the best method estimation ,as it was found that the best method for estimating the survival function is the squares-least method because it has the lowest IMSE and for all sample sizes

Crossref
View Publication Preview PDF