Preferred Language
Articles
/
ijs-2477
Weighted k-Nearest Neighbour for Image Spam Classification

E-mail is an efficient and reliable data exchange service. Spams are undesired e-mail messages which are randomly sent in bulk usually for commercial aims. Obfuscated image spamming is one of the new tricks to bypass text-based and Optical Character Recognition (OCR)-based spam filters. Image spam detection based on image visual features has the advantage of efficiency in terms of reducing the computational cost and improving the performance. In this paper, an image spam detection schema is presented. Suitable image processing techniques were used to capture the image features that can differentiate spam images from non-spam ones. Weighted k-nearest neighbor, which is a simple, yet powerful, machine learning algorithm, was used as a classifier. The results confirm the effectiveness of the proposed schema as it is evaluated over two datasets. The first dataset is a real and benchmark dataset while the other is a real-like, modern, and more challenging dataset collected from social media and many public available image spam datasets. The obtained accuracy was 99.36% and 91% on benchmark and the proposed dataset, respectively.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Sep 23 2020
Journal Name
Artificial Intelligence Research
Hybrid approaches to feature subset selection for data classification in high-dimensional feature space

This paper proposes two hybrid feature subset selection approaches based on the combination (union or intersection) of both supervised and unsupervised filter approaches before using a wrapper, aiming to obtain low-dimensional features with high accuracy and interpretability and low time consumption. Experiments with the proposed hybrid approaches have been conducted on seven high-dimensional feature datasets. The classifiers adopted are support vector machine (SVM), linear discriminant analysis (LDA), and K-nearest neighbour (KNN). Experimental results have demonstrated the advantages and usefulness of the proposed methods in feature subset selection in high-dimensional space in terms of the number of selected features and time spe

... Show More
Crossref
View Publication
Publication Date
Mon Apr 03 2023
Journal Name
International Journal Of Online And Biomedical Engineering (ijoe)
An Integrated Grasshopper Optimization Algorithm with Artificial Neural Network for Trusted Nodes Classification Problem

Wireless Body Area Network (WBAN) is a tool that improves real-time patient health observation in hospitals, asylums, especially at home. WBAN has grown popularity in recent years due to its critical role and vast range of medical applications. Due to the sensitive nature of the patient information being transmitted through the WBAN network, security is of paramount importance. To guarantee the safe movement of data between sensor nodes and various WBAN networks, a high level of security is required in a WBAN network. This research introduces a novel technique named Integrated Grasshopper Optimization Algorithm with Artificial Neural Network (IGO-ANN) for distinguishing between trusted nodes in WBAN networks by means of a classifica

... Show More
Scopus Clarivate Crossref
View Publication
Publication Date
Fri Jan 01 2016
Journal Name
Modern Applied Science
Hybrid Methodology for Image Segmentation Based on Active Contour Module and Alpha-Shape Theory

The concept of the active contour model has been extensively utilized in the segmentation and analysis of images. This technology has been effectively employed in identifying the contours in object recognition, computer graphics and vision, biomedical processing of images that is normal images or medical images such as Magnetic Resonance Images (MRI), X-rays, plus Ultrasound imaging. Three colleagues, Kass, Witkin and Terzopoulos developed this energy, lessening “Active Contour Models” (equally identified as Snake) back in 1987. Being curved in nature, snakes are characterized in an image field and are capable of being set in motion by external and internal forces within image data and the curve itself in that order. The present s

... Show More
Publication Date
Sun Oct 30 2022
Journal Name
Iraqi Journal Of Science
Automated Methodology for Volume Fraction Measurement of Three Phase Steel Micrograph Using Image Processing Techniques

     A quantitative description of microstructure governs the characteristics of the material. Various heat and excellent treatments reveal micro-structures when the material is prepared. Depending on the microstructure, mechanical properties like hardness, ductility, strength, toughness, corrosion resistance, etc., also vary. Microstructures are characterized by morphological features like volume fraction of different phases, particle size, etc. Relative volume fractions of the phases must be known to correlate with the mechanical properties. In this work, using image processing techniques, an automated scheme was presented to calculate relative volume fractions of the phases, namely Ferrite, Martensite, and Bainite, present in the

... Show More
Scopus (1)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Feb 08 2019
Journal Name
Journal Of The College Of Education For Women
Minimum Spanning Tree Algorithm for Skin Cancer Image Object Detection

This paper proposes a new method Object Detection in Skin Cancer Image, the minimum
spanning tree Detection descriptor (MST). This ObjectDetection descriptor builds on the
structure of the minimum spanning tree constructed on the targettraining set of Skin Cancer
Images only. The Skin Cancer Image Detection of test objects relies on their distances to the
closest edge of thattree. Our experimentsshow that the Minimum Spanning Tree (MST) performs
especially well in case of Fogginessimage problems and in highNoisespaces for Skin Cancer
Image.
The proposed method of Object Detection Skin Cancer Image wasimplemented and tested on
different Skin Cancer Images. We obtained very good results . The experiment showed that

... Show More
View Publication Preview PDF
Publication Date
Sat Feb 01 2020
Journal Name
International Journal Of Computer Science And Mobile Computing
Publication Date
Mon Jul 01 2019
Journal Name
2019 International Joint Conference On Neural Networks (ijcnn)
Scopus (37)
Crossref (35)
Scopus Clarivate Crossref
View Publication
Publication Date
Mon Feb 01 2021
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
OFDM PAPR reduction for image transmission using improved tone reservation

High peak to average power ration (PAPR) in orthogonal frequency division multiplexing (OFDM) is an important problem, which increase the cost and complexity of high power amplifiers. One of the techniques used to reduce the PAPR in OFDM system is the tone reservation method (TR). In our work we propose a modified tone reservation method to decrease the PAPR with low complexity compared with the conventional TR method by process the high and low amplitudes at the same time. An image of size 128×128 is used as a source of data that transmitted using OFDM system. The proposed method decrease the PAPR by 2dB compared with conventional method with keeping the performance unchanged. The performance of the proposed method is tested with

... Show More
Scopus (6)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Sat Apr 01 2023
Journal Name
Baghdad Science Journal
Some K-Banhatti Polynomials of First Dominating David Derived Networks

Chemical compounds, characteristics, and molecular structures are inevitably connected. Topological indices are numerical values connected with chemical molecular graphs that contribute to understanding a chemical compounds physical qualities, chemical reactivity, and biological activity. In this study, we have obtained some topological properties of the first dominating David derived (DDD) networks and computed several K-Banhatti polynomials of the first type of DDD.

Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Oct 22 2022
Journal Name
Aro-the Scientific Journal Of Koya University
Classification of Different Shoulder Girdle Motions for Prosthesis Control Using a Time-Domain Feature Extraction Technique

Abstract—The upper limb amputation exerts a significant burden on the amputee, limiting their ability to perform everyday activities, and degrading their quality of life. Amputee patients’ quality of life can be improved if they have natural control over their prosthetic hands. Among the biological signals, most commonly used to predict upper limb motor intentions, surface electromyography (sEMG), and axial acceleration sensor signals are essential components of shoulder-level upper limb prosthetic hand control systems. In this work, a pattern recognition system is proposed to create a plan for categorizing high-level upper limb prostheses in seven various types of shoulder girdle motions. Thus, combining seven feature groups, w

... Show More
Crossref (1)
Clarivate Crossref
View Publication Preview PDF