A quantitative description of microstructure governs the characteristics of the material. Various heat and excellent treatments reveal micro-structures when the material is prepared. Depending on the microstructure, mechanical properties like hardness, ductility, strength, toughness, corrosion resistance, etc., also vary. Microstructures are characterized by morphological features like volume fraction of different phases, particle size, etc. Relative volume fractions of the phases must be known to correlate with the mechanical properties. In this work, using image processing techniques, an automated scheme was presented to calculate relative volume fractions of the phases, namely Ferrite, Martensite, and Bainite, present in the microscopic image of high strength low alloy steel. First, the microscopic image was segmented into Ferrite, Martensite, and Bainite regions. The phase structure's geometric property was used to identify different phases present inside the micrograph. After phase detection, the volume fraction of each region is calculated.
Pavement crack and pothole identification are important tasks in transportation maintenance and road safety. This study offers a novel technique for automatic asphalt pavement crack and pothole detection which is based on image processing. Different types of cracks (transverse, longitudinal, alligator-type, and potholes) can be identified with such techniques. The goal of this research is to evaluate road surface damage by extracting cracks and potholes, categorizing them from images and videos, and comparing the manual and the automated methods. The proposed method was tested on 50 images. The results obtained from image processing showed that the proposed method can detect cracks and potholes and identify their severity levels wit
... Show MoreKidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. Accurate estimation of kidney tumor volume is essential for clinical diagnoses and therapeutic decisions related to renal diseases. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors that addresses the challenges of accurate kidney tumor volume estimation caused by extensive variations in kidney shape, size and orientation across subjects.
In this paper, have tried to implement an automated segmentati
Early detection of eye diseases can forestall visual deficiency and vision loss. There are several types of human eye diseases, for example, diabetic retinopathy, glaucoma, arteriosclerosis, and hypertension. Diabetic retinopathy (DR) which is brought about by diabetes causes the retinal vessels harmed and blood leakage in the retina. Retinal blood vessels have a huge job in the detection and treatment of different retinal diseases. Thus, retinal vasculature extraction is significant to help experts for the finding and treatment of systematic diseases. Accordingly, early detection and consequent treatment are fundamental for influenced patients to protect their vision. The aim of this paper is to detect blood vessels from
... Show MoreBackground:
There is a need to find methods to assess the size of the extracellular fluid (ECF) volume without involving radioactive tracers. For this purpose, the simple delusion method was used
to measure the ECF in rabbits and the inulin which is a polysaccharide was used as a marker of ECF measurement.
Methods:
18 male rabbits were used in this study. 8 of these animals were bilaterally nephroctomized to calculate the exact time to get diffusion equilibrium time after a bolus dose of inulin at a
dose of 25mg/kg of a solution of inulin 10 mg/ml. intravenously. The blood samples were taken after 1, 15, 45, 60, 90, 120, and 180 min.
Results:
ECF volume was about 144.5 to 149.7 ml/kg depending on the i
The Khor Mor gas-condensate processing plant in Iraq is currently facing operational challenges due to foaming issues in the sweetening tower caused by high-soluble hydrocarbon liquids entering the tower. The root cause of the problem could be liquid carry-over as the separation vessels within the plant fail to remove liquid droplets from the gas phase. This study employs Aspen HYSYS v.11 software to investigate the performance of the industrial three-phase horizontal separator, Bravo #2, located upstream of the Khor Mor sweetening tower, under both current and future operational conditions. The simulation results, regarding the size distribution of liquid droplets in the gas product and the efficiency gas/liquid separation, r
... Show MoreBreast cancer (BC) is first of the top 10 malignancies in Iraq. Dose‐volume histograms (DVHs) are most commonly used as a plan evaluation tool. This study aimed to assess DVH statistics using three‐dimensional conformal radiotherapies in BC in an adjuvant setting.
A retrospective study of 70 histologically confirmed women diagnosed with BC was reviewed. The study was conducted between November 2020 and May 2021, planning for treatment with adjuvant three‐dimensional conformal radiotherapies. The treatment plan used for each woman was based on an analysis of the volumetric dose, inclu
Cognitive radios have the potential to greatly improve spectral efficiency in wireless networks. Cognitive radios are considered lower priority or secondary users of spectrum allocated to a primary user. Their fundamental requirement is to avoid interference to potential primary users in their vicinity. Spectrum sensing has been identified as a key enabling functionality to ensure that cognitive radios would not interfere with primary users, by reliably detecting primary user signals. In addition, reliable sensing creates spectrum opportunities for capacity increase of cognitive networks. One of the key challenges in spectrum sensing is the robust detection of primary signals in highly negative signal-to-noise regimes (SNR).In this paper ,
... Show MoreA system was used to detect injuries in plant leaves by combining machine learning and the principles of image processing. A small agricultural robot was implemented for fine spraying by identifying infected leaves using image processing technology with four different forward speeds (35, 46, 63 and 80 cm/s). The results revealed that increasing the speed of the agricultural robot led to a decrease in the mount of supplements spraying and a detection percentage of infected plants. They also revealed a decrease in the percentage of supplements spraying by 46.89, 52.94, 63.07 and 76% with different forward speeds compared to the traditional method.
In the reverse engineering approach, a massive amount of point data is gathered together during data acquisition and this leads to larger file sizes and longer information data handling time. In addition, fitting of surfaces of these data point is time-consuming and demands particular skills. In the present work a method for getting the control points of any profile has been presented. Where, many process for an image modification was explained using Solid Work program, and a parametric equation of the profile that proposed has been derived using Bezier technique with the control points that adopted. Finally, the proposed profile was machined using 3-aixs CNC milling machine and a compression in dimensions process has been occurred betwe
... Show More