E-mail is an efficient and reliable data exchange service. Spams are undesired e-mail messages which are randomly sent in bulk usually for commercial aims. Obfuscated image spamming is one of the new tricks to bypass text-based and Optical Character Recognition (OCR)-based spam filters. Image spam detection based on image visual features has the advantage of efficiency in terms of reducing the computational cost and improving the performance. In this paper, an image spam detection schema is presented. Suitable image processing techniques were used to capture the image features that can differentiate spam images from non-spam ones. Weighted k-nearest neighbor, which is a simple, yet powerful, machine learning algorithm, was used as a classifier. The results confirm the effectiveness of the proposed schema as it is evaluated over two datasets. The first dataset is a real and benchmark dataset while the other is a real-like, modern, and more challenging dataset collected from social media and many public available image spam datasets. The obtained accuracy was 99.36% and 91% on benchmark and the proposed dataset, respectively.
A new technique for embedding image data into another BMP image data is presented. The image data to be embedded is referred to as signature image, while the image into which the signature image is embedded is referred as host image. The host and the signature images are first partitioned into 8x8 blocks, discrete cosine transformed “DCT”, only significant coefficients are retained, the retained coefficients then inserted in the transformed block in a forward and backward zigzag scan direction. The result then inversely transformed and presented as a BMP image file. The peak signal-to-noise ratio (PSNR) is exploited to evaluate the objective visual quality of the host image compared with the original image.
In this paper, a fusion of K models of full-rank weighted nonnegative tensor factor two-dimensional deconvolution (K-wNTF2D) is proposed to separate the acoustic sources that have been mixed in an underdetermined reverberant environment. The model is adapted in an unsupervised manner under the hybrid framework of the generalized expectation maximization and multiplicative update algorithms. The derivation of the algorithm and the development of proposed full-rank K-wNTF2D will be shown. The algorithm also encodes a set of variable sparsity parameters derived from Gibbs distribution into the K-wNTF2D model. This optimizes each sub-model in K-wNTF2D with the required sparsity to model the time-varying variances of the sources in the s
... Show MoreBackground: Conventional MR imaging is essential for diagnosis and evaluation of the posterior fossa tumors Objectives: To assess the value of diffusion weighted imaging and apparent diffusion coefficient in making distinction between different histological types of posterior fossa tumors.
Type of the study: Cross-sectional study.
Methods: Brain MRI and DWI assessed 19 patients (12 female and 7 male) with MRI diagnosis of posterior fossa tumors. absolute ADC values of contrast -enhancing solid tumor region and ADC ratio of solid tumor to ADC of normal -appearing deep White matter were compared with histological diagnosis postoperatively .The m
... Show MoreBackground: image processing of medical images is major method to increase reliability of cancer diagnosis.
Methods: The proposed system proceeded into two stages: First, enhancement stage which was performed using of median filter to reduce the noise and artifacts that present in a CT image of a human lung with a cancer, Second: implementation of k-means clustering algorithm.
Results: the result image of k-means algorithm compared with the image resulted from implementation of fuzzy c-means (FCM) algorithm.
Conclusion: We found that the time required for k-means algorithm implementation is less than that of FCM algorithm.MATLAB package (version 7.3) was used in writing the programming code of our w
The definition of orthogonal generalized higher k-derivation is examined in this paper and we introduced some of its related results.
Objective: To suggest a weighted measure to diagnose the reasons for the low student success ratios in mathematics concerning the third grade of intermediate schools in light of components educational system represented by: [Students, Teachers, Curriculum, and Environmental reasons (others reasons)] assuming differentiated and interrelated components, Also the effectiveness forming of these components according to the gender variable. Methods: Data collection tools were prepared by constructing two questionnaires for each of (Students and Teachers), which included a number of items that involved some domains for studied components of educational system, which demonstrated a high level of validity and reliability in the pilot study, in addi
... Show MoreThe concealment of data has emerged as an area of deep and wide interest in research that endeavours to conceal data in a covert and stealth manner, to avoid detection through the embedment of the secret data into cover images that appear inconspicuous. These cover images may be in the format of images or videos used for concealment of the messages, yet still retaining the quality visually. Over the past ten years, there have been numerous researches on varying steganographic methods related to images, that emphasised on payload and the quality of the image. Nevertheless, a compromise exists between the two indicators and to mediate a more favourable reconciliation for this duo is a daunting and problematic task. Additionally, the current
... Show MoreCompressing an image and reconstructing it without degrading its original quality is one of the challenges that still exist now a day. A coding system that considers both quality and compression rate is implemented in this work. The implemented system applies a high synthetic entropy coding schema to store the compressed image at the smallest size as possible without affecting its original quality. This coding schema is applied with two transform-based techniques, one with Discrete Cosine Transform and the other with Discrete Wavelet Transform. The implemented system was tested with different standard color images and the obtained results with different evaluation metrics have been shown. A comparison was made with some previous rel
... Show MoreVitamin K is a fundamental enzymatic co-factor implicated in the carboxylation of several vitamin K dependent proteins involved in the pathogenesis of certain age – related diseases. Inflammation is realized as an important factor in such diseases. Vitamin K is recognized to play an anti-inflammatory behavior that is distinct of its action as an enzymatic co- factor by suppressing many signaling pathways mainly the nuclear factor κB (NF-κB) signal transduction pathway. As well as to play a role as an antioxidant versus the generation of reactive oxidative species (ROS). The purpose of this review is to focus on the protective function of vitamin K as an anti-inflammatory agent
... Show MoreWe have studied some types of ideals in a KU-semigroup by using the concept of a bipolar fuzzy set. Bipolar fuzzy S-ideals and bipolar fuzzy k-ideals are introduced, and some properties are investigated. Also, some relations between a bipolar fuzzy k-ideal and k-ideal are discussed. Moreover, a bipolar fuzzy k-ideal under homomorphism and the product of two bipolar fuzzy k-ideals are studied.