Let be a ring with identity and be a submodule of a left - module . A submodule of is called - small in denoted by , in case for any submodule of , implies . Submodule of is called semi -T- small in , denoted by , provided for submodule of , implies that . We studied this concept which is a generalization of the small submodules and obtained some related results
Abstract Throughout this paper R represents commutative ring with identity and M is a unitary left R-module, the purpose of this paper is to study a new concept, (up to our knowledge), named St-closed submodules. It is stronger than the concept of closed submodules, where a submodule N of an R-module M is called St-closed (briefly N ≤Stc M) in M, if it has no proper semi-essential extensions in M, i.e if there exists a submodule K of M such that N is a semi-essential submodule of K then N = K. An ideal I of R is called St-closed if I is an St-closed R-submodule. Various properties of St-closed submodules are considered.
Throughout this paper we introduce the notion of coextending module as a dual of the class of extending modules. Various properties of this class of modules are given, and some relationships between these modules and other related modules are introduced.
In this paper, we introduce a new concept named St-polyform modules, and show that the class of St-polyform modules is contained properly in the well-known classes; polyform, strongly essentially quasi-Dedekind and ?-nonsingular modules. Various properties of such modules are obtained. Another characterization of St-polyform module is given. An existence of St-polyform submodules in certain class of modules is considered. The relationships of St-polyform with some related concepts are investigated. Furthermore, we introduce other new classes which are; St-semisimple and ?-non St-singular modules, and we verify that the class of St-polyform modules lies between them.
The present study introduces the concept of J-pure submodules as a generalization of pure submodules. We study some of its basic properties and by using this concept we define the class of J-regular modules, where an R-module M is called J-regular module if every submodule of M is J-pure submodule. Many results about this concept are proved
The main goal of this paper is to introduce a new class in the category of modules. It is called quasi-invertibility monoform (briefly QI-monoform) modules. This class of modules is a generalization of monoform modules. Various properties and another characterization of QI-monoform modules are investigated. So, we prove that an R-module M is QI-monoform if and only if for each non-zero homomorphism f:M E(M), the kernel of this homomorphism is not quasi-invertible submodule of M. Moreover, the cases under which the QI-monoform module can be monoform are discussed. The relationships between QI-monoform and other related concepts such as semisimple, injective and multiplication modules are studied. We also show that they are proper subclass
... Show MoreIn this work, we introduced and studied a new kind of soft mapping on soft topological spaces with an ideal, which we called soft strongly generalized mapping with respect an ideal I, we studied the concepts like SSIg-continuous, Contra-SSIg-continuous, SSIg-open, SSIg-closed and SSIg-irresolute mapping and the relations between these kinds of mappings and the composition of two mappings of the same type of two different types, with proofs or counter examples
In this paper we introduced the concept of 2-pure submodules as a generalization of pure submodules, we study some of its basic properties and by using this concept we define the class of 2-regular modules, where an R-module M is called 2-regular module if every submodule is 2-pure submodule. Many results about this concept are given.
The paper comprise comparative palynological study of six species belong to the genera Urtica L. and Parietaria L.(P.alsinifolia Del., P.lusitanica L., P.judaicaL., U.urens L., U.dioica L., and U.pilulifera L.) of the Family Urticaceae in Iraq. All pollen grains were small size and found to be porate, Stephanoporate, Zonoporate. Characters such as shape of pollen grain, number and Dimention of pores, and Sculpturing of pollen grains were overlapped between species and of limited taxonomic value.
We introduce in this paper the concept of an approximately pure submodule as a generalization of a pure submodule, that is defined by Anderson and Fuller. If every submodule of an R-module is approximately pure, then is called F-approximately regular. Further, many results about this concept are given.
Throughout this work we introduce the notion of Annihilator-closed submodules, and we give some basic properties of this concept. We also introduce a generalization for the Extending modules, namely Annihilator-extending modules. Some fundamental properties are presented as well as we discuss the relation between this concept and some other related concepts.