Preferred Language
Articles
/
ijs-7886
Quasi-invertibility Monoform Modules
...Show More Authors

The main goal of this paper is to introduce a new class in the category of modules. It is called quasi-invertibility monoform (briefly QI-monoform) modules. This class of modules is a generalization of monoform modules. Various properties and another characterization of QI-monoform modules are investigated. So, we prove that an R-module M is QI-monoform if and only if for each non-zero homomorphism f:M E(M), the kernel of this homomorphism is not quasi-invertible submodule of M. Moreover, the cases under which the QI-monoform module can be monoform are discussed. The relationships between QI-monoform and other related concepts such as semisimple, injective and multiplication modules are studied. We also show that they are proper subclasses of QI-monoform modules. Furthermore, we focus on the relationship between QI-monoform and polyform modules.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2011
Journal Name
Al- Mustansiriya J. Sci
Rationally Extending Modules and Strongly Quasi-Monoform Modules
...Show More Authors

An R-module M is called rationally extending if each submodule of M is rational in a direct summand of M. In this paper we study this class of modules which is contained in the class of extending modules, Also we consider the class of strongly quasi-monoform modules, an R-module M is called strongly quasi-monoform if every nonzero proper submodule of M is quasi-invertible relative to some direct summand of M. Conditions are investigated to identify between these classes. Several properties are considered for such modules

View Publication Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Italian Journal Of Pure And Applied Mathematics
Co-small monoform modules
...Show More Authors

he concept of small monoform module was introduced by Hadi and Marhun, where a module U is called small monoform if for each non-zero submodule V of U and for every non-zero homomorphism f ∈ Hom R (V, U), implies that ker f is small submodule of V. In this paper the author dualizes this concept; she calls it co-small monoform module. Many fundamental properties of co-small monoform module are given. Partial characterization of co-small monoform module is established. Also, the author dualizes the concept of small quasi-Dedekind modules which given by Hadi and Ghawi. She show that co-small monoform is contained properly in the class of the dual of small quasi-Dedekind modules. Furthermore, some subclasses of co-small monoform are investiga

... Show More
View Publication Preview PDF
Scopus
Publication Date
Mon Apr 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Small Monoform Modules
...Show More Authors

 Let R be a commutative ring with unity, let M be a left R-module. In this paper we introduce the concept small monoform module as a generalization of monoform module. A module M is called small monoform if for each non zero submodule N of M and for each   f ∈ Hom(N,M), f ≠ 0 implies ker f is small submodule in N. We give the fundamental properties of small monoform modules. Also we present some relationships between small monoform modules and some related modules

View Publication Preview PDF
Publication Date
Mon May 15 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Essentially Quasi-Invertible Submodules and Essentially Quasi-Dedekind Modules
...Show More Authors

        Let R be a commutative ring with  identity . In this paper  we study  the concepts of  essentially quasi-invertible submodules and essentially  quasi-Dedekind modules  as  a generalization of  quasi-invertible submodules and quasi-Dedekind  modules  . Among the results that we obtain is the following : M  is an essentially  quasi-Dedekind  module if and only if M is aK-nonsingular module,where a module M is K-nonsingular if, for each  , Kerf ≤e M   implies   f = 0 .

View Publication Preview PDF
Publication Date
Sat Jun 27 2020
Journal Name
Iraqi Journal Of Science
Quasi J-Regular Modules
...Show More Authors

Throughout this note, R is commutative ring with identity and M is a unitary R-module. In this paper, we introduce the concept of quasi J-  submodules as a     –  and give some of its basic properties. Using this concept, we define the class of quasi J-regular modules, where an R-module     J- module if every submodule of  is quasi J-pure. Many results about this concept

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Fri Oct 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Quasi-semiprime Modules
...Show More Authors

    Suppose that A be an abelain ring with identity, B be a unitary (left) A-module, in this paper ,we introduce a type of modules ,namely Quasi-semiprime A-module, whenever   is a Prime Ideal For proper submodule N of  B,then B is called Quasi-semiprime module ,which is a Generalization of Quasi-Prime A-module,whenever  annAN is a prime ideal for proper submodule N of B,then B is Quasi-prime module .A comprchensive study of these modules is given,and we study the Relationship between quasi-semiprime module and quasi-prime .We put the codition coprime over cosemiprime ring for the two cocept quasi-prime module and quasi-semiprime module are equavelant.and the cocept of  prime module and quasi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu May 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Strongly Essentially Quasi-Dedekind Modules
...Show More Authors

  Let R be a commutative ring with unity. In this paper we introduce and study the concept of strongly essentially quasi-Dedekind module as a generalization of essentially quasiDedekind module. A unitary R-module M is called a strongly essentially quasi-Dedekind module if ( , ) 0 Hom M N M for all semiessential submodules N of M. Where a submodule N  of  an R-module  M  is called semiessential if , 0  pN for all nonzero prime submodules  P of  M .
 

View Publication Preview PDF
Publication Date
Sun Oct 22 2023
Journal Name
Iraqi Journal Of Science
Quasi -Fully Cancellation Modules
...Show More Authors

Let M be an R-module. In this paper we introduce the concept of quasi-fully cancellation modules as a generalization of fully cancellation modules. We give the basic properties, several characterizations about this concept. Also, the direct sum and the localization of quasi-fully cancellation modules are studied.

View Publication Preview PDF
Publication Date
Sun Jul 31 2022
Journal Name
Iraqi Journal Of Science
Small-Essentially Quasi-Dedekind R-Modules
...Show More Authors

In this research, we introduce a small essentially quasi−Dedekind R-module to generalize the term of an essentially quasi.−Dedekind R-module. We also give some of the basic properties and a number of examples that illustrate these properties.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
2-Quasi-prime modules
...Show More Authors

     We introduce in this paper, the notion of a 2-quasì-prime module as a generalization of quasi-prime module, we know that a module E over a ring R is called quasi-prime module, if (0) is quasi-prime submodule. Now, we say that a module E over ring R is a 2-quasi-prime module if (0) is 2-quasi-prime submodule, a proper submodule K of E is 2-quasi-prime submodule if whenever ,  and , then either  or .

Many results about these kinds of modules are obtained and proved, also, we will give a characterization of these kinds of modules.

View Publication Preview PDF
Scopus Crossref