The cloud-users are getting impatient by experiencing the delays in loading the content of the web applications over the internet, which is usually caused by the complex latency while accessing the cloud datacenters distant from the cloud-users. It is becoming a catastrophic situation in availing the services and applications over the cloud-centric network. In cloud, workload is distributed across the multiple layers which also increases the latency. Time-sensitive Internet of Things (IoT) applications and services, usually in a cloud platform, are running over various virtual machines (VM’s) and possess high complexities while interacting. They face difficulties in the consolidations of the various applications containing heterogenetic workloads. Fog computing takes the cloud computing services to the edge-network, where computation, communication and storage are within the proximity to the end-user’s edge devices. Thus, it utilizes the maximum network bandwidth, enriches the mobility, and lowers the latency. It is a futuristic, convenient and more reliable platform to overcome the cloud computing issues. In this manuscript, we propose a Fog-based Spider Web Algorithm (FSWA), a heuristic approach which reduces the delays time (DT) and enhances the response time (RT) during the workflow among the various edge nodes across the fog network. The main purpose is to trace and locate the nearest f-node for computation and to reduce the latency across the various nodes in a network. Reduction of latency will enhance the quality of service (QoS) parameters, smooth resource distribution, and services availability. Latency can be an important factor for resource optimization issues in distributed computing environments. In comparison to the cloud computing, the latency in fog computing is much improved.
The accuracy of the Moment Method for imposing no-slip boundary conditions in the lattice Boltzmann algorithm is investigated numerically using lid-driven cavity flow. Boundary conditions are imposed directly upon the hydrodynamic moments of the lattice Boltzmann equations, rather than the distribution functions, to ensure the constraints are satisfied precisely at grid points. Both single and multiple relaxation time models are applied. The results are in excellent agreement with data obtained from state-of-the-art numerical methods and are shown to converge with second order accuracy in grid spacing.
In this paper, we are mainly concerned with estimating cascade reliability model (2+1) based on inverted exponential distribution and comparing among the estimation methods that are used . The maximum likelihood estimator and uniformly minimum variance unbiased estimators are used to get of the strengths and the stress ;k=1,2,3 respectively then, by using the unbiased estimators, we propose Preliminary test single stage shrinkage (PTSSS) estimator when a prior knowledge is available for the scale parameter as initial value due past experiences . The Mean Squared Error [MSE] for the proposed estimator is derived to compare among the methods. Numerical results about conduct of the considered
... Show MoreFuture wireless networks will require advance physical-layer techniques to meet the requirements of Internet of Everything (IoE) applications and massive communication systems. To this end, a massive MIMO (m-MIMO) system is to date considered one of the key technologies for future wireless networks. This is due to the capability of m-MIMO to bring a significant improvement in the spectral efficiency and energy efficiency. However, designing an efficient downlink (DL) training sequence for fast channel state information (CSI) estimation, i.e., with limited coherence time, in a frequency division duplex (FDD) m-MIMO system when users exhibit different correlation patterns, i.e., span distinct channel covariance matrices, is to date ve
... Show MoreIn this paper, we proposed a hybrid control methodology using improved artificial potential field with modify cat swarm algorithm to path planning of decoupled multi-mobile robot in dynamic environment. The proposed method consists of two phase: in the first phase, Artificial Potential Field method (APF) is used to generate path for each one of robots and avoided static obstacles in environment, and improved this method to solve the local minimum problem by using A* algorithm with B-Spline curve while in the second phase, modify Cat Swarm Algorithm (CSA) is used to control collision that occurs among robots or between robot with movable obstacles by using two behaviour modes: seek mode and track mode. Experimental results show that the p
... Show More