A network (or formally a graph) can be described by a set of nodes and a set of edges connecting these nodes. Networks model many real-world phenomena in various research domains, such as biology, engineering and sociology. Community mining is discovering the groups in a network where individuals group of membership are not explicitly given. Detecting natural divisions in such complex networks is proved to be extremely NP-hard problem that recently enjoyed a considerable interest. Among the proposed methods, the field of evolutionary algorithms (EAs) takes a remarkable interest. To this end, the aim of this paper is to present the general statement of community detection problem in social networks. Then, it visits the problem as an optim
... Show MoreEstablishing complete and reliable coverage for a long time-span is a crucial issue in densely surveillance wireless sensor networks (WSNs). Many scheduling algorithms have been proposed to model the problem as a maximum disjoint set covers (DSC) problem. The goal of DSC based algorithms is to schedule sensors into several disjoint subsets. One subset is assigned to be active, whereas, all remaining subsets are set to sleep. An extension to the maximum disjoint set covers problem has also been addressed in literature to allow for more advance sensors to adjust their sensing range. The problem, then, is extended to finding maximum number of overlapped set covers. Unlike all related works which concern with the disc sensing model, the cont
... Show MoreIn real world, almost all networks evolve over time. For example, in networks of friendships and acquaintances, people continually create and delete friendship relationship connections over time, thereby add and draw friends, and some people become part of new social networks or leave their networks, changing the nodes in the network. Recently, tracking communities encountering topological shifting drawn significant attentions and many successive algorithms have been proposed to model the problem. In general, evolutionary clustering can be defined as clustering data over time wherein two concepts: snapshot quality and temporal smoothness should be considered. Snapshot quality means that the clusters should be as precise as possible durin
... Show More