Preferred Language
Articles
/
ijs-1471
On Hollow – J–Lifting Modules

In this paper, we introduce and study the concepts of hollow – J–lifting modules and FI – hollow – J–lifting modules as a proper generalization of both hollow–lifting and J–lifting modules . We call an R–module M as hollow – J – lifting if for every submodule N of M with is hollow, there exists a submodule K of M such that M = K Ḱ and K N in M . Several characterizations and properties of hollow –J–lifting modules are obtained . Modules related to hollow – J–lifting modules are  given .

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jan 04 2022
Journal Name
Iraqi Journal Of Science
Generalized Radical Lifting Modules

In this paper we introduce G-Rad-lifting module as aproper generalization of lifting module, some properties of this type of modules are investigated. We prove that if M is G-Rad- lifting and
, then
, and
are G-Rad- lifting, hence we Conclude the direct summand of G-Rad- lifting is also G-Rad- lifting. Also we prove that if M is a duo module with
and
are G- Rad- lifting then M is G-Rad- lifting.

View Publication Preview PDF
Publication Date
Sun Dec 05 2010
Journal Name
Baghdad Science Journal
ON M- Hollow modules

Let R be associative ring with identity and M is a non- zero unitary left module over R. M is called M- hollow if every maximal submodule of M is small submodule of M. In this paper we study the properties of this kind of modules.

Crossref
View Publication Preview PDF
Publication Date
Fri Jan 01 2010
Journal Name
Iraqi Journal Of Science
PRIME HOLLOW MODULES

A non-zero module M is called hollow, if every proper submodule of M is small. In this work we introduce a generalization of this type of modules; we call it prime hollow modules. Some main properties of this kind of modules are investigated and the relation between these modules with hollow modules and some other modules are studied, such as semihollow, amply supplemented and lifting modules.

View Publication Preview PDF
Publication Date
Thu Jun 30 2022
Journal Name
Iraqi Journal Of Science
On Indeterminacy (Neutrosophic ) of Hollow Modules

    In this paper, we formulate and study a new property, namely indeterminacy (neutrosophic) of the hollow module. We mean indeterminacy hollow module is neutrosophic hollow module B (shortly Ne(B)) such that it is not possible to specify the conditions for satisfying it.  Some concepts have been studied and introduced, for instance, the indeterminacy local module, indeterminacy divisible module, indeterminacy indecomposable module and indeterminacy hollow-lifting module. Also, we investigate that if Ne(B) is an indeterminacy divisible module with no indeterminacy zero divisors, then any indeterminacy submodule Ne(K) of Ne(B) is an indeterminacy hollow module. Further, we study the relationship between the indeterminacy of hollow an

... Show More
Scopus (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
On Large-Lifting and Large-Supplemented Modules

      In this paper, we introduce the concepts of Large-lifting and Large-supplemented modules as a generalization of lifting and supplemented modules.  We also give some results and properties of this new kind of modules.

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
On J–Lifting Modules
Abstract<p>Let R be a ring with identity and M is a unitary left R–module. M is called J–lifting module if for every submodule N of M, there exists a submodule K of N such that <inline-formula> <tex-math><?CDATA ${\rm{M}} = {\rm{K}} \oplus \mathop {\rm{K}}\limits^\prime,\>\mathop {\rm{K}}\limits^\prime \subseteq {\rm{M}}$?></tex-math> <math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block" overflow="scroll"> <mrow> <mi mathvariant="normal">M</mi> <mo>=</mo> <mi mathvariant="normal">K</mi></mrow></math></inline-formula></p> ... Show More
Scopus (4)
Scopus Crossref
View Publication
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
ESSENTIAL T-hollow-lifting module
Abstract<p>Let M be a R-module, where R be a commutative ring with identity, In this paper, we defined a new kind of module namely ET-hollow lifting module, Let T be a submodule of M, M is called ET-hollow lifting module if for every sub-module H of M with <inline-formula> <tex-math><?CDATA $\frac{M}{H}$?></tex-math> <math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mrow> <mfrac> <mi>M</mi> <mi>H</mi> </mfrac> </mrow> </math></inline-formula></p> ... Show More
Scopus (2)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Wed Nov 27 2019
Journal Name
Iraqi Journal Of Science
ON T-HOLLOW-LIFITING MODULES

     Let  be an R-module, and let  be a submodule of . A submodule  is called -Small submodule () if for every submodule  of  such that  implies that . In our work we give the definition of -coclosed submodule and -hollow-lifiting modules with many properties.

Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Apr 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
δ-Hollow Modules

    Let R be a commutative ring with unity and M be a non zero unitary left R-module. M is called a hollow module if every proper submodule N of M is small (N ≪ M), i.e. N + W ≠ M for every proper submodule W in M. A δ-hollow module is a generalization of hollow module, where an R-module M is called δ-hollow module if every proper submodule N of M is δ-small (N δ  M), i.e. N + W ≠ M for every proper submodule W in M with M W is singular. In this work we study this class of modules and give several fundamental properties related with this concept

View Publication Preview PDF
Publication Date
Fri Jul 19 2019
Journal Name
Iraqi Journal Of Science
On Jacobson – Small Submodules

Let R be an associative ring with identity and let M be a unitary left R–module. As a generalization of small submodule , we introduce Jacobson–small submodule (briefly J–small submodule ) . We state the main properties of J–small submodules and supplying examples and remarks for this concept . Several properties of these submodules are given . Also we introduce Jacobson–hollow modules ( briefly J–hollow ) . We give a characterization of J–hollow modules and gives conditions under which the direct sum of J–hollow modules is J–hollow . We define J–supplemented modules and some types of modules that are related to J–supplemented modules and int

... Show More
Scopus (15)
Crossref (5)
Scopus Crossref
View Publication Preview PDF