Preferred Language
Articles
/
ijs-1115
ON T-HOLLOW-LIFITING MODULES
...Show More Authors

     Let  be an R-module, and let  be a submodule of . A submodule  is called -Small submodule () if for every submodule  of  such that  implies that . In our work we give the definition of -coclosed submodule and -hollow-lifiting modules with many properties.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jul 31 2021
Journal Name
Iraqi Journal Of Science
Semi-T-Hollow Modules and Semi-T-Lifting Modules
...Show More Authors

Let be an associative ring with identity and let be a unitary left -module. Let  be a non-zero submodule of .We say that  is a semi- - hollow module if for every submodule  of  such that  is a semi- - small submodule ( ). In addition, we say that  is a semi- - lifting module if for every submodule  of , there exists a direct summand  of  and  such that  

The main purpose of this work was to develop the properties of these classes of module.

 

View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Dec 05 2010
Journal Name
Baghdad Science Journal
ON M- Hollow modules
...Show More Authors

Let R be associative ring with identity and M is a non- zero unitary left module over R. M is called M- hollow if every maximal submodule of M is small submodule of M. In this paper we study the properties of this kind of modules.

View Publication Preview PDF
Crossref
Publication Date
Wed Jan 12 2022
Journal Name
Iraqi Journal Of Science
Hollow Modules With Respect to an Arbitrary Submodule
...Show More Authors

In this paper ,we introduce hollow modules with respect to an arbitrary submodule .Let M be a non-zero module and T be a submodule of M .We say that M is aT-hollow module if every proper submodule K of M such that T ⊈ K is a T-small submodule of M .We investigate the basic properties of a T-hollow module

View Publication Preview PDF
Publication Date
Mon Apr 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
δ-Hollow Modules
...Show More Authors

    Let R be a commutative ring with unity and M be a non zero unitary left R-module. M is called a hollow module if every proper submodule N of M is small (N ≪ M), i.e. N + W ≠ M for every proper submodule W in M. A δ-hollow module is a generalization of hollow module, where an R-module M is called δ-hollow module if every proper submodule N of M is δ-small (N δ  M), i.e. N + W ≠ M for every proper submodule W in M with M W is singular. In this work we study this class of modules and give several fundamental properties related with this concept

View Publication Preview PDF
Publication Date
Sun Sep 29 2019
Journal Name
Iraqi Journal Of Science
T-Polyform Modules
...Show More Authors

We introduce the notion of t-polyform modules. The class of t- polyform modules contains the class of polyform modules and contains the class of t-essential quasi-Dedekind.

     Many characterizations of t-polyform modules are given. Also many connections between these class of modules and other types of modules are introduced.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat Nov 28 2020
Journal Name
Iraqi Journal Of Science
Strongly Hollow R - Annihilator Lifting Modules and Strongly R - Annihilator (Hollow- Lifting) Modules
...Show More Authors

Let R be a commutative ring with unity. Let W be an R-module, for K≤F, where F is a submodule of W and K is said to be R-annihilator coessential submodule of F in W (briefly R-a-coessential) if  (denoted by K  F in W). An R-module W is called strongly hollow -R-annihilator -lifting module (briefly, strongly hollow-R-a-lifting), if for every submodule F of W with  hollow, there exists a fully invariant direct summand K of W such that K  F in W. An R - module W is called strongly R - annihilator - ( hollow - lifting ) module ( briefly strongly R - a - ( hollow - lifting ) module ), if for every submodule F of W with   R - a - hollow, there exists a fully invariant direct summand K o

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Apr 28 2022
Journal Name
Iraqi Journal Of Science
Generalized-hollow lifting modules
...Show More Authors

Let R be any ring with identity, and let M be a unitary left R-module. A submodule K of M is called generalized coessential submodule of N in M, if Rad( ). A module M is called generalized hollow-lifting module, if every submodule N of M with is a hollow module, has a generalized coessential submodule of N in M that is a direct summand of M. In this paper, we study some properties of this type of modules.

View Publication Preview PDF
Publication Date
Fri Feb 28 2020
Journal Name
Iraqi Journal Of Science
T-Stable-extending Modules and Strongly T- stable Extending Modules
...Show More Authors

     In this paper we introduce the notions of t-stable extending and strongly t-stable extending modules. We investigate properties and characterizations of each of these concepts. It is shown that a direct sum of t-stable extending modules is t-stable extending while with certain conditions a direct sum of strongly t-stable extending is strongly t-stable extending. Also, it is proved that under certain condition, a stable submodule of t-stable extending (strongly t-stable extending) inherits the property.

View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Baghdad Science Journal
Stable Semisimple Modules, Stable t- Semisimple Modules and Strongly Stable t-Semisimple Modules
...Show More Authors

        Throughout this paper, three concepts are introduced namely stable semisimple modules, stable t-semisimple modules and strongly stable t-semisimple. Many features co-related with these concepts are presented. Also many connections between these concepts are given. Moreover several relationships between these classes of modules and other co-related classes and other related concepts are introduced.

View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Thu Jun 30 2022
Journal Name
Iraqi Journal Of Science
On Indeterminacy (Neutrosophic ) of Hollow Modules
...Show More Authors

    In this paper, we formulate and study a new property, namely indeterminacy (neutrosophic) of the hollow module. We mean indeterminacy hollow module is neutrosophic hollow module B (shortly Ne(B)) such that it is not possible to specify the conditions for satisfying it.  Some concepts have been studied and introduced, for instance, the indeterminacy local module, indeterminacy divisible module, indeterminacy indecomposable module and indeterminacy hollow-lifting module. Also, we investigate that if Ne(B) is an indeterminacy divisible module with no indeterminacy zero divisors, then any indeterminacy submodule Ne(K) of Ne(B) is an indeterminacy hollow module. Further, we study the relationship between the indeterminacy of hollow an

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Crossref