Let R be an associative ring with identity and let M be a unitary left R–module. As a generalization of small submodule , we introduce Jacobson–small submodule (briefly J–small submodule ) . We state the main properties of J–small submodules and supplying examples and remarks for this concept . Several properties of these submodules are given . Also we introduce Jacobson–hollow modules ( briefly J–hollow ) . We give a characterization of J–hollow modules and gives conditions under which the direct sum of J–hollow modules is J–hollow . We define J–supplemented modules and some types of modules that are related to J–supplemented modules and introduce properties of this types of modules . Also we discuss the relation between them with examples and remarks are needed in our work.
Let be a commutative ring with identity , and be a unitary (left) R-module. A proper submodule of is said to be quasi- small prime submodule , if whenever with and , then either or . In this paper ,we give a comprehensive study of quasi- small prime submodules.
Let M be an R-module, where R is a commutative ring with unity. A submodule N of M is called e-small (denoted by N e  M) if N + K = M, where K e  M implies K = M. We give many properties related with this type of submodules.
Let R be a commutative ring with identity, and M be unital (left) R-module. In this paper we introduce and study the concept of small semiprime submodules as a generalization of semiprime submodules. We investigate some basis properties of small semiprime submodules and give some characterizations of them, especially for (finitely generated faithful) multiplication modules.
A submodule Ϝ of an R-module Ε is called small in Ε if whenever , for some submodule W of Ε , implies . In this paper , we introduce the notion of Ζ-small submodule , where a proper submodule Ϝ of an R-module Ε is said to be Ζ-small in Ε if , such that , then , where is the second singular submodule of Ε . We give some properties of Ζ-small submodules . Moreover , by using this concept , we generalize the notions of hollow modules , supplement submodules, and supplemented modules into Ζ-hollow modules, Ζ-supplement submodules, and Ζ-supplemented modules. We study these concepts and provide some of their relations .
The main goal of this paper is to give a new generalizations for two important classes in the category of modules, namely the class of small submodules and the class of hollow modules. They are purely small submodules and purely hollow modules respectively. Various properties of these classes of modules are investigated. The relationship between purely small submodules and P-small submodules which is introduced by Hadi and Ibrahim, is studied. Moreover, another characterization of purely hollow modules is considered.
Let R be a commutative ring with identity and E be a unitary left R – module .We introduce and study the concept Weak Pseudo – 2 – Absorbing submodules as generalization of weakle – 2 – Absorbing submodules , where a proper submodule A of an R – module E is called Weak Pseudo – 2 – Absorbing if 0 ≠rsx A for r, s R , x E , implies that rx A + soc ( E ) or sx A + soc (E) or rs [ A + soc ( E ) E ]. Many basic properties, char
... Show MoreLet be a ring with identity and be a submodule of a left - module . A submodule of is called - small in denoted by , in case for any submodule of , implies . Submodule of is called semi -T- small in , denoted by , provided for submodule of , implies that . We studied this concept which is a generalization of the small submodules and obtained some related results
Let R be an associative ring with identity and M be unital non zero R-module. A
submodule N of a module M is called a δ-small submodule of M (briefly N << M )if
N+X=M for any proper submodule X of M with M/X singular, we have
X=M .
In this work,we study the modules which satisfies the ascending chain condition
(a. c. c.) and descending chain condition (d. c. c.) on this kind of submodules .Then
we generalize this conditions into the rings , in the last section we get same results
on δ- supplement submodules and we discuss some of these results on this types of
submodules.
In this paper, we introduce and study the concepts of hollow – J–lifting modules and FI – hollow – J–lifting modules as a proper generalization of both hollow–lifting and J–lifting modules . We call an R–module M as hollow – J – lifting if for every submodule N of M with is hollow, there exists a submodule K of M such that M = K Ḱ and K N in M . Several characterizations and properties of hollow –J–lifting modules are obtained . Modules related to hollow – J–lifting modules are given .
Let