Let R be an associative ring with identity and M be unital non zero R-module. A
submodule N of a module M is called a δ-small submodule of M (briefly N << M )if
N+X=M for any proper submodule X of M with M/X singular, we have
X=M .
In this work,we study the modules which satisfies the ascending chain condition
(a. c. c.) and descending chain condition (d. c. c.) on this kind of submodules .Then
we generalize this conditions into the rings , in the last section we get same results
on δ- supplement submodules and we discuss some of these results on this types of
submodules.
An R-module M is called a 2-regular module if every submodule N of M is 2-pure submodule, where a submodule N of M is 2-pure in M if for every ideal I of R, I2MN = I2N, [1]. This paper is a continuation of [1]. We give some conditions to characterize this class of modules, also many relationships with other related concepts are introduced.
In this paper, we formulate and study a new property, namely indeterminacy (neutrosophic) of the hollow module. We mean indeterminacy hollow module is neutrosophic hollow module B (shortly Ne(B)) such that it is not possible to specify the conditions for satisfying it. Some concepts have been studied and introduced, for instance, the indeterminacy local module, indeterminacy divisible module, indeterminacy indecomposable module and indeterminacy hollow-lifting module. Also, we investigate that if Ne(B) is an indeterminacy divisible module with no indeterminacy zero divisors, then any indeterminacy submodule Ne(K) of Ne(B) is an indeterminacy hollow module. Further, we study the relationship between the indeterminacy of hollow an
... Show MoreIn this paper, we introduce and study the concepts of hollow – J–lifting modules and FI – hollow – J–lifting modules as a proper generalization of both hollow–lifting and J–lifting modules . We call an R–module M as hollow – J – lifting if for every submodule N of M with is hollow, there exists a submodule K of M such that M = K Ḱ and K N in M . Several characterizations and properties of hollow –J–lifting modules are obtained . Modules related to hollow – J–lifting modules are given .
In previous our research, the concepts of visible submodules and fully visible modules were introduced, and then these two concepts were fuzzified to fuzzy visible submodules and fully fuzzy. The main goal of this paper is to study the relationships between fully fuzzy visible modules and some types of fuzzy modules such as semiprime, prime, quasi, divisible, F-regular, quasi injective, and duo fuzzy modules, where under certain conditions it has been proven that each fully fuzzy visible module is fuzzy duo. In addition, there are many various properties and important results obtained through this research, which have been illustrated. Also, fuzzy Artinian modules and fuzzy fully stable modules have been introduced, and we study the rel
... Show MoreSamples of Bi1.6Pb0.4Sr2Ca2Cu3O10+δ superconductor were prepared by solid-state reaction method to study the effects of gold nanoparticles addition to the superconducting system, Nano-Au was introduced by small weight percentages (0.25, 0.50, 0.75, 1.0, and 1.25 weight %). Phase identification and microstructural
characterization of the samples were investigated using XRD and SEM. Moreover, DC electrical resistivity as a function of the temperature, critical current density Jc, AC magnetic susceptibility, and DC magnetization measurements were carried to evaluate the relative performance of samples. x-ray diffraction analysis showed that both (Bi,Pb)-2223 and Bi-2212 phases coexist in the samples having an orthorhombic crystal struct
Throughout this paper we introduce the notion of coextending module as a dual of the class of extending modules. Various properties of this class of modules are given, and some relationships between these modules and other related modules are introduced.
In this article, unless otherwise established, all rings are commutative with identity and all modules are unitary left R-module. We offer this concept of WN-prime as new generalization of weakly prime submodules. Some basic properties of weakly nearly prime submodules are given. Many characterizations, examples of this concept are stablished.
We introduce the notion of t-polyform modules. The class of t- polyform modules contains the class of polyform modules and contains the class of t-essential quasi-Dedekind.
Many characterizations of t-polyform modules are given. Also many connections between these class of modules and other types of modules are introduced.
Robot manipulator is a multi-input multi-output system with high complex nonlinear dynamics, requiring an advanced controller in order to track a specific trajectory. In this work, forward and inverse kinematics are presented based on Denavit Hartenberg notation to convert the end effector planned path from cartesian space to joint space and vice versa where a cubic spline interpolation is used for trajectory segments to ensure the continuity in velocity and acceleration. Also, the derived mathematical dynamic model is based on Eular Lagrange energy method to contain the effect of friction and disturbance torques beside the inertia and Coriolis effect. Two types of controller are applied ; the nonlinear computed torque control (CTC
... Show More