Preferred Language
Articles
/
ijs-11946
Modules With Chain Conditions On δ -Small Submodules

Let R be an associative ring with identity and M be unital non zero R-module. A
submodule N of a module M is called a δ-small submodule of M (briefly N << M )if
N+X=M for any proper submodule X of M with M/X singular, we have
X=M .
In this work,we study the modules which satisfies the ascending chain condition
(a. c. c.) and descending chain condition (d. c. c.) on this kind of submodules .Then
we generalize this conditions into the rings , in the last section we get same results
on δ- supplement submodules and we discuss some of these results on this types of
submodules.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
On Quasi-Small Prime Submodules

     Let  be a commutative  ring with identity , and  be a unitary (left) R-module. A proper submodule  of  is said to be quasi- small prime submodule  , if whenever   with  and , then either or . In this paper ,we give a comprehensive study of quasi- small prime submodules.

Scopus (2)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Jul 19 2019
Journal Name
Iraqi Journal Of Science
On Jacobson – Small Submodules

Let R be an associative ring with identity and let M be a unitary left R–module. As a generalization of small submodule , we introduce Jacobson–small submodule (briefly J–small submodule ) . We state the main properties of J–small submodules and supplying examples and remarks for this concept . Several properties of these submodules are given . Also we introduce Jacobson–hollow modules ( briefly J–hollow ) . We give a characterization of J–hollow modules and gives conditions under which the direct sum of J–hollow modules is J–hollow . We define J–supplemented modules and some types of modules that are related to J–supplemented modules and int

... Show More
Scopus (15)
Crossref (5)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
On Small Semiprime Submodules
Abstract<p>Let R be a commutative ring with identity, and M be unital (left) R-module. In this paper we introduce and study the concept of small semiprime submodules as a generalization of semiprime submodules. We investigate some basis properties of small semiprime submodules and give some characterizations of them, especially for (finitely generated faithful) multiplication modules.</p>
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Thu Jul 01 2021
Journal Name
Iraqi Journal Of Science
Semi -T- Small Submodules

Let  be a ring with identity and  be a submodule of a left - module . A submodule  of  is called - small in  denoted by , in case for any submodule  of ,  implies .  Submodule  of  is called semi -T- small in , denoted by , provided for submodule  of ,  implies that . We studied this concept which is a generalization of the small submodules and obtained some related results

Scopus (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Oct 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Semi-Small Compressible Modules and Semi-Small Retractable Modules

Let  be a commutative ring with 1 and  be left unitary  . In this paper we introduced and studied concept of semi-small compressible module (a     is said to be semi-small compressible module if  can be embedded in every nonzero semi-small submodule of . Equivalently,  is  semi-small compressible module if there exists a monomorphism  , ,     is said to be semi-small retractable module if  , for every non-zero  semi-small sub module in . Equivalently,  is semi-small retractable if there exists a homomorphism  whenever  .

    In this paper we introduce and study the concept of semi-small compressible and semi-small retractable s as a generalization of compressible  and retractable  respectively and give some of

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Apr 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Small Monoform Modules

 Let R be a commutative ring with unity, let M be a left R-module. In this paper we introduce the concept small monoform module as a generalization of monoform module. A module M is called small monoform if for each non zero submodule N of M and for each   f ∈ Hom(N,M), f ≠ 0 implies ker f is small submodule in N. We give the fundamental properties of small monoform modules. Also we present some relationships between small monoform modules and some related modules

View Publication Preview PDF
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
On Quasi-Small Prime Modules
Abstract<p>Let R be a commutative ring with identity, and W be a unital (left) R-module. In this paper we introduce and study the concept of a quasi-small prime modules as generalization of small prime modules.</p>
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Fri Oct 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Semi-Small Compressible Modules and Semi-Small Retractable Modules

Let  be a commutative ring with 1 and  be left unitary  . In this paper we introduced and studied concept of semi-small compressible module (a     is said to be semi-small compressible module if  can be embedded in every nonzero semi-small submodule of . Equivalently,  is  semi-small compressible module if there exists a monomorphism  , ,     is said to be semi-small retractable module if  , for every non-zero  semi-small sub module in . Equivalently,  is semi-small retractable if there exists a homomorphism  whenever  .     In this paper we introduce and study the concept of semi-small compressible and semi-small retractable s as a generalization of compressible  and retractable  respectively and give some of their adv

... Show More
Crossref
Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
P-small Compressible Modules and P-small Retractable Modules

Let  be a commutative ring with 1 and  be left unitary  . In this papers we introduced and studied concept P-small compressible  (An     is said to be P-small compressible if  can be embedded in every of it is nonzero P-small submodule of . Equivalently,  is P-small compressible if there exists a monomorphism  , ,     is said to be P-small retractable if  , for every non-zero P-small submodule of . Equivalently,  is P-small retractable if there exists a homomorphism  whenever  as a generalization of compressible  and retractable  respectively and give some of their advantages characterizations and examples.

Crossref
View Publication Preview PDF
Publication Date
Wed Mar 28 2018
Journal Name
Iraqi Journal Of Science
Essential-small Projective Modules

In this paper, we introduce the concept of e-small Projective modules as a generlization of Projective modules.

View Publication Preview PDF