Preferred Language
Articles
/
ijs-1164
ET-Coessential and ET-Coclosed submodules

Let M be an R-module, where R be a commutative;ring with identity. In this paper, we defined a new kind of submodules, namely; ET-coessential and ET-Coclosed submodules of M. Let T be a submodule of M. Let K  H  M, K  is called  ET-Coessential of H in M (K⊆ET.ce H), if     . A submodule H is called ET- coclosed in M of H has no proper coessential submodule in M, we denote by  (K⊆ET.cc H) , that is, K⊆ET.ce H implies that   K = H. In our work, we introduce;some properties of ET-coessential and ET-coclosed submodules of M.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
On Quasi-Small Prime Submodules

     Let  be a commutative  ring with identity , and  be a unitary (left) R-module. A proper submodule  of  is said to be quasi- small prime submodule  , if whenever   with  and , then either or . In this paper ,we give a comprehensive study of quasi- small prime submodules.

Scopus (2)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Apr 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Weak Pseudo – 2 – Absorbing Submodules And Related Concepts

      Let  R  be a commutative ring  with identity  and  E  be a unitary left  R – module .We introduce  and study the concept Weak Pseudo – 2 – Absorbing submodules as  generalization of weakle – 2 – Absorbing submodules , where a proper submodule  A of  an  R – module  E is  called  Weak Pseudo – 2 – Absorbing  if   0 ≠ rsx   A   for  r, s  R , x  E , implies that  rx   A + soc ( E ) or  sx  A + soc (E)  or   rs  [ A + soc ( E ) E ]. Many basic  properties, char

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
Basrah Journal Of Science
Preview PDF
Publication Date
Sun Mar 01 2015
Journal Name
Baghdad Science Journal
S-maximal Submodules

Throughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ⊊ W ⊆ M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of rings

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Mar 01 2009
Journal Name
Baghdad Science Journal
Weak Essential Submodules

A non-zero submodule N of M is called essential if N L for each non-zero submodule L of M. And a non-zero submodule K of M is called semi-essential if K P for each non-zero prime submodule P of M. In this paper we investigate a class of submodules that lies between essential submodules and semi-essential submodules, we call these class of submodules weak essential submodules.

Crossref
View Publication Preview PDF
Publication Date
Sun Mar 01 2015
Journal Name
Baghdad Science Journal
S-maximal Submodules

Throughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ? W ? M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of ri

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Thu Apr 27 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
S-Coprime Submodules

  In this paper, we introduce and study the concept of S-coprime submodules, where a proper submodule N of an R-module M is called S-coprime submodule if M N is S-coprime Rmodule. Many properties about this concept are investigated.

View Publication Preview PDF
Publication Date
Sun Sep 29 2019
Journal Name
Iraqi Journal Of Science
I-Semiprime Submodules

 Let  be a commutative ring with identity and a fixed ideal of  and  be an unitary -module.We say that a proper submodule  of  is -semi prime submodule if with . In this paper, we investigate some properties of this class of submodules. Also, some characterizations of -semiprime submodules will be given, and we show that under some assumptions -semiprime submodules and semiprime submodules are coincided.

Scopus (2)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
Annihilator Essential Submodules
Abstract<p>Through this paper R represent a commutative ring with identity and all R-modules are unitary left R-modules. In this work we consider a generalization of the class of essential submodules namely annihilator essential submodules. We study the relation between the submodule and his annihilator and we give some basic properties. Also we introduce the concept of annihilator uniform modules and annihilator maximal submodules.</p>
Scopus (3)
Scopus Crossref
View Publication
Publication Date
Mon Apr 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Semisecond Submodules

      Let  be a right module over a ring  with identity. The semisecond submodules are studied in this paper. A nonzero submodule  of   is called semisecond if    for each . More information and characterizations about this concept is provided in our work.

Crossref
View Publication Preview PDF