In this paper we introduce the notions of t-stable extending and strongly t-stable extending modules. We investigate properties and characterizations of each of these concepts. It is shown that a direct sum of t-stable extending modules is t-stable extending while with certain conditions a direct sum of strongly t-stable extending is strongly t-stable extending. Also, it is proved that under certain condition, a stable submodule of t-stable extending (strongly t-stable extending) inherits the property.
In this work, We introduce the concepts of an FP-Extending, FP-Continuous and FP-Quasi-Continuous which are stronger than P-Extending, P-Continuous and P-Quasi-Continuous. characterizations and properties of FP-Extending, FP-Continuous and FP-Quasi-Continuous are obtained . A module M is called FP-Extending ( FP-Continuous, FP-Quasi-Continuous) if every submodule is P-Extending (P-Continuous, P-Quasi-Continuous) .
A submoduleA of amodule M is said to be strongly pure , if for each finite subset {ai} in A , (equivalently, for each a ?A) there exists ahomomorphism f : M ?A such that f(ai) = ai, ?i(f(a)=a).A module M is said to be strongly F–regular if each submodule of M is strongly pure .The main purpose of this paper is to develop the properties of strongly F–regular modules and study modules with the property that the intersection of any two strongly pure submodules is strongly pure .
The main aim of this research is to present and to study several basic characteristics of the idea of FI-extending semimodules. The semimodule is said to be an FI-extending semimodule if each fully invariant subsemimodule of is essential in direct summand of . The behavior of the FI-extending semimodule with respect to direct summands as well as the direct sum is considered. In addition, the relationship between the singularity and FI-extending semimodule has been studied and investigated. Finally extending propertywhich is stronger than FI extending, that has some results related to FI-extending and singularity is also investigated.
Since 1980s, the study of the extending module in the module theory has been a major area of research interest in the ring theory and it has been studied recently by several authors, among them N.V. Dung, D.V. Huyn, P.F. Smith and R. Wisbauer. Because the act theory signifies a generalization of the module theory, the author studied in 2017 the class of extending acts which are referred to as a generalization of quasi-injective acts. The importance of the extending acts motivated us to study a dual of this concept, named the coextending act. An S-act MS is referred to as coextending act if every coclosed subact of Ms is a retract of MS where a subact AS of MS is said to be coclosed in MS if whenever the Rees factor â„ is small in th
... Show MoreLet Ḿ be a unitary R-module and R is a commutative ring with identity. Our aim in this paper to study the concepts T-ABSO fuzzy ideals, T-ABSO fuzzy submodules and T-ABSO quasi primary fuzzy submodules, also we discuss these concepts in the class of multiplication fuzzy modules and relationships between these concepts. Many new basic properties and characterizations on these concepts are given.
In this paper, we present the almost approximately nearly quasi compactly packed (submodules) modules as an application of the almost approximately nearly quasiprime submodule. We give some examples, remarks, and properties of this concept. Also, as the strong form of this concept, we introduce the strongly, almost approximately nearly quasi compactly packed (submodules) modules. Moreover, we present the definitions of almost approximately nearly quasiprime radical submodules and almost approximately nearly quasiprime radical submodules and give some basic properties of these concepts that will be needed in section four of this research. We study these two concepts extensively.
Throughout this paper we introduce the notion of coextending module as a dual of the class of extending modules. Various properties of this class of modules are given, and some relationships between these modules and other related modules are introduced.
Let S be a commutative ring with identity, and A is an S-module. This paper introduced an important concept, namely strongly maximal submodule. Some properties and many results were proved as well as the behavior of that concept with its localization was studied and shown.
Let R be a commutative ring with identity. R is said to be P.P ring if every principle ideal of R is projective. Endo proved that R is P.P ring if and only if Rp is an integral domain for each prime ideal P of R and the total quotient ring Rs of R is regular. Also he proved that R is a semi-hereditary ring if and only if Rp is a valuation domain for each prime ideal P of R and the total quotient Rs of R is regular. , and we study some of properties of these modules. In this paper we study analogue of these results in C.F, C.P, F.G.F, F.G.P R-modules.
Let R be commutative ring with identity and let M be any unitary left R-module. In this paper we study the properties of ec-closed submodules, ECS- modules and the relation between ECS-modules and other kinds of modules. Also, we study the direct sum of ECS-modules.