Preferred Language
Articles
/
ijs-1146
T-Polyform Modules
...Show More Authors

We introduce the notion of t-polyform modules. The class of t- polyform modules contains the class of polyform modules and contains the class of t-essential quasi-Dedekind.

     Many characterizations of t-polyform modules are given. Also many connections between these class of modules and other types of modules are introduced.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Apr 30 2021
Journal Name
Iraqi Journal Of Science
On Small Primary Modules
...Show More Authors

Let  be a commutative ring with an identity and be a unitary -module. We say that a non-zero submodule  of  is  primary if for each with en either or  and an -module  is a small primary if   =  for each proper submodule  small in. We provided and demonstrated some of the characterizations and features of these types of submodules (modules).  

View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Jan 01 2010
Journal Name
Iraqi Journal Of Science
PRIME HOLLOW MODULES
...Show More Authors

A non-zero module M is called hollow, if every proper submodule of M is small. In this work we introduce a generalization of this type of modules; we call it prime hollow modules. Some main properties of this kind of modules are investigated and the relation between these modules with hollow modules and some other modules are studied, such as semihollow, amply supplemented and lifting modules.

View Publication Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Italian Journal Of Pure And Applied Mathematics
Co-small monoform modules
...Show More Authors

he concept of small monoform module was introduced by Hadi and Marhun, where a module U is called small monoform if for each non-zero submodule V of U and for every non-zero homomorphism f ∈ Hom R (V, U), implies that ker f is small submodule of V. In this paper the author dualizes this concept; she calls it co-small monoform module. Many fundamental properties of co-small monoform module are given. Partial characterization of co-small monoform module is established. Also, the author dualizes the concept of small quasi-Dedekind modules which given by Hadi and Ghawi. She show that co-small monoform is contained properly in the class of the dual of small quasi-Dedekind modules. Furthermore, some subclasses of co-small monoform are investiga

... Show More
View Publication Preview PDF
Scopus
Publication Date
Sun Sep 03 2017
Journal Name
Baghdad Science Journal
CL-duo modules
...Show More Authors

In this paper, we introduce and study a new concept (up to our knowledge) named CL-duo modules, which is bigger than that of duo modules, and smaller than weak duo module which is given by Ozcan and Harmanci. Several properties are investigated. Also we consider some characterizations of CL-duo modules. Moreover, many relationships are given for this class of modules with other related classes of modules such as weak duo modules, P-duo modules.

View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Sun Mar 19 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
2-Regular Modules
...Show More Authors

  In this paper we introduced the concept of 2-pure submodules as a generalization of pure submodules, we study some of its basic properties and by using this concept we define the class of 2-regular modules, where an R-module M is called 2-regular module if every submodule is 2-pure submodule. Many results about this concept are given. 

View Publication Preview PDF
Publication Date
Wed Apr 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Loc-hollow Fuzzy Modules with Related Modules
...Show More Authors

     The concept of a small f- subm was presented in a previous study. This work introduced a concept of a hollow f- module, where a module is said to be hollow fuzzy when every subm of it is a small f- subm. Some new types of hollow modules are provided namely, Loc- hollow f- modules as a strength of the hollow module, where every Loc- hollow f- module is a hollow module, but the converse is not true. Many properties and characterizations of these concepts are proved, also the relationship between all these types is researched. Many important results that explain this relationship are demonstrated also several characterizations and properties related to these concepts are given.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Mar 29 2024
Journal Name
Iraqi Journal Of Science
Pure-Hollow Modules and Pure-Lifting Modules
...Show More Authors

   Let  be a commutative ring with identity, and  be a unitary left R-module. In this paper we, introduce and study a new class of modules called pure hollow (Pr-hollow) and pure-lifting (Pr-lifting). We give a fundamental, properties of these concept.  also, we, introduce some conditions under which the quotient and direct sum of Pr-lifting modules is Pr-lifting.

Scopus Crossref
Publication Date
Mon Apr 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
δ-Hollow Modules
...Show More Authors

    Let R be a commutative ring with unity and M be a non zero unitary left R-module. M is called a hollow module if every proper submodule N of M is small (N ≪ M), i.e. N + W ≠ M for every proper submodule W in M. A δ-hollow module is a generalization of hollow module, where an R-module M is called δ-hollow module if every proper submodule N of M is δ-small (N δ  M), i.e. N + W ≠ M for every proper submodule W in M with M W is singular. In this work we study this class of modules and give several fundamental properties related with this concept

View Publication Preview PDF
Publication Date
Sun May 17 2020
Journal Name
Iraqi Journal Of Science
Absolutely Self Neat Modules
...Show More Authors

An -module is called absolutely self neat if whenever is a map from a maximal left ideal of , with kernel in the filter is generated by the set of annihilator left ideals of elements in into , then is extendable to a map from into . The concept is analogous to the absolute self purity, while it properly generalizes quasi injectivity and absolute neatness and retains some of their properties. Certain types of rings are characterized using this concept. For example, a ring is left max-hereditary if and only if the homomorphic image of any absolutely neat -module is absolutely self neat, and is semisimple if and only if all -modules are absolutely self neat.

View Publication Preview PDF
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
A Generalization of t-Practical Numbers
...Show More Authors

This paper generalizes and improves the results of Margenstren, by proving that the number of -practical numbers  which is defined by   has a lower bound in terms of . This bound is more sharper than Mangenstern bound when  Further general results are given for the existence of -practical numbers, by proving that the interval contains a -practical for all

View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref