Preferred Language
Articles
/
ijs-2272
Absolutely Self Neat Modules
...Show More Authors

An -module is called absolutely self neat if whenever is a map from a maximal left ideal of , with kernel in the filter is generated by the set of annihilator left ideals of elements in into , then is extendable to a map from into . The concept is analogous to the absolute self purity, while it properly generalizes quasi injectivity and absolute neatness and retains some of their properties. Certain types of rings are characterized using this concept. For example, a ring is left max-hereditary if and only if the homomorphic image of any absolutely neat -module is absolutely self neat, and is semisimple if and only if all -modules are absolutely self neat.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Feb 13 2024
Journal Name
Iraqi Journal Of Science
Coregular Modules
...Show More Authors

In this paper we study the concepts of copure submodules and coregular
modules. Many results related with these concepts are obtained.

View Publication Preview PDF
Publication Date
Mon Apr 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Small Monoform Modules
...Show More Authors

 Let R be a commutative ring with unity, let M be a left R-module. In this paper we introduce the concept small monoform module as a generalization of monoform module. A module M is called small monoform if for each non zero submodule N of M and for each   f ∈ Hom(N,M), f ≠ 0 implies ker f is small submodule in N. We give the fundamental properties of small monoform modules. Also we present some relationships between small monoform modules and some related modules

View Publication Preview PDF
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
2-Quasi-prime modules
...Show More Authors

     We introduce in this paper, the notion of a 2-quasì-prime module as a generalization of quasi-prime module, we know that a module E over a ring R is called quasi-prime module, if (0) is quasi-prime submodule. Now, we say that a module E over ring R is a 2-quasi-prime module if (0) is 2-quasi-prime submodule, a proper submodule K of E is 2-quasi-prime submodule if whenever ,  and , then either  or .

Many results about these kinds of modules are obtained and proved, also, we will give a characterization of these kinds of modules.

View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Apr 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
δ-Hollow Modules
...Show More Authors

    Let R be a commutative ring with unity and M be a non zero unitary left R-module. M is called a hollow module if every proper submodule N of M is small (N ≪ M), i.e. N + W ≠ M for every proper submodule W in M. A δ-hollow module is a generalization of hollow module, where an R-module M is called δ-hollow module if every proper submodule N of M is δ-small (N δ  M), i.e. N + W ≠ M for every proper submodule W in M with M W is singular. In this work we study this class of modules and give several fundamental properties related with this concept

View Publication Preview PDF
Publication Date
Sun Mar 06 2011
Journal Name
Baghdad Science Journal
The Relationships between Relatively Cancellation Modules and Certain Types of Modules
...Show More Authors

Let R be a commutative ring with identity and M be unitary (left) R-module. The principal aim of this paper is to study the relationships between relatively cancellation module and multiplication modules, pure submodules and Noetherian (Artinian) modules.

View Publication Preview PDF
Crossref
Publication Date
Fri Jun 24 2022
Journal Name
Iraqi Journal Of Science
ON ECS modules
...Show More Authors

Let R be commutative ring with identity and let M be any unitary left R-module. In this paper we study the properties of ec-closed submodules, ECS- modules and the relation between ECS-modules and other kinds of modules. Also, we study the direct sum of ECS-modules.

View Publication Preview PDF
Publication Date
Fri Oct 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Semi-Small Compressible Modules and Semi-Small Retractable Modules
...Show More Authors

Let  be a commutative ring with 1 and  be left unitary  . In this paper we introduced and studied concept of semi-small compressible module (a     is said to be semi-small compressible module if  can be embedded in every nonzero semi-small submodule of . Equivalently,  is  semi-small compressible module if there exists a monomorphism  , ,     is said to be semi-small retractable module if  , for every non-zero  semi-small sub module in . Equivalently,  is semi-small retractable if there exists a homomorphism  whenever  .

    In this paper we introduce and study the concept of semi-small compressible and semi-small retractable s as a generalization of compressible  and retractable  respectively and give some of

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Dec 05 2010
Journal Name
Baghdad Science Journal
ON M- Hollow modules
...Show More Authors

Let R be associative ring with identity and M is a non- zero unitary left module over R. M is called M- hollow if every maximal submodule of M is small submodule of M. In this paper we study the properties of this kind of modules.

View Publication Preview PDF
Crossref
Publication Date
Fri Jun 30 2023
Journal Name
Iraqi Journal Of Science
Z-Small Quasi-Dedekind Modules
...Show More Authors

     In this paper, we define and study z-small quasi-Dedekind as a generalization of small quasi-Dedekind modules. A submodule  of -module  is called z-small (  if whenever  , then . Also,  is called a z-small quasi-Dedekind module if for all  implies  . We also describe some of their properties and characterizations. Finally, some examples are given.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Semi-Essentially Compressible Modules and Semi-Essentially Retractable Modules
...Show More Authors

Let  be a commutative ring with 1 and  be a left unitary . In this paper, the generalizations for the notions of compressible module and  retractable module are given.

An   is termed to be  semi-essentially compressible if   can be embedded in every of a non-zero semi-essential submodules. An  is termed a semi-essentially retractable module, if   for every non-zero semi-essentially submodule of an . Some of their advantages characterizations and examples are given.  We also study the relation between these classes and some other classes of modules.

View Publication Preview PDF
Scopus Crossref