Let be a commutative ring with identity and a fixed ideal of and be an unitary -module.We say that a proper submodule of is -semi prime submodule if with . In this paper, we investigate some properties of this class of submodules. Also, some characterizations of -semiprime submodules will be given, and we show that under some assumptions -semiprime submodules and semiprime submodules are coincided.
Let be a commutative ring with identity and let be an R-module. We call an R-submodule of as P-essential if for each nonzero prime submodule of and 0 . Also, we call an R-module as P-uniform if every non-zero submodule of is P-essential. We give some properties of P-essential and introduce many properties to P-uniform R-module. Also, we give conditions under which a submodule of a multiplication R-module becomes P-essential. Moreover, various properties of P-essential submodules are considered.
Let R be a commutative ring with unity. And let E be a unitary R-module. This paper introduces the notion of 2-prime submodules as a generalized concept of 2-prime ideal, where proper submodule H of module F over a ring R is said to be 2-prime if , for r R and x F implies that or . we prove many properties for this kind of submodules, Let H is a submodule of module F over a ring R then H is a 2-prime submodule if and only if [N ] is a 2-prime submodule of E, where r R. Also, we prove that if F is a non-zero multiplication module, then [K: F] [H: F] for every submodule k of F such that H K. Furthermore, we will study the basic properties of this kind of submodules.
The purpose of this paper is to prove the following result: Let R be a 2-torsion free ring and T: R?R an additive mapping such that T is left (right) Jordan ?-centralizers on R. Then T is a left (right) ?-centralizer of R, if one of the following conditions hold (i) R is a semiprime ring has a commutator which is not a zero divisor . (ii) R is a non commutative prime ring . (iii) R is a commutative semiprime ring, where ? be surjective endomorphism of R . It is also proved that if T(x?y)=T(x)??(y)=?(x)?T(y) for all x, y ? R and ?-centralizers of R coincide under same condition and ?(Z(R)) = Z(R) .
Let R be a ring and let A be a unitary left R-module. A proper submodule H of an R-module A is called 2-absorbing , if rsa∈H, where r,s∈R,a∈A, implies that either ra∈H or sa∈H or rs∈[H:A], and a proper submodule H of an R-module A is called quasi-prime , if rsa∈H, where r,s∈R,a∈A, implies that either ra∈H or sa∈H. This led us to introduce the concept pseudo quasi-2-absorbing submodule, as a generalization of both concepts above, where a proper submodule H of an R-module A is called a pseudo quasi-2-absorbing submodule of A, if whenever rsta∈H,where r,s,t∈R,a∈A, implies that either rsa∈H+soc(A) or sta∈H+soc(A) or rta∈H+soc(A), where soc(A) is socal of an
... Show MoreThe main goal of this paper is introducing and studying a new concept, which is named H-essential submodules, and we use it to construct another concept called Homessential modules. Several fundamental properties of these concepts are investigated, and other characterizations for each one of them is given. Moreover, many relationships of Homessential modules with other related concepts are studied such as Quasi-Dedekind, Uniform, Prime and Extending modules.
Let R be a semiprime ring with center Z(R) and U be a nonzero ideal of R. An additive mappings are called right centralizer if ( ) ( ) and ( ) ( ) holds for all . In the present paper, we introduce the concepts of generalized strong commutativity centralizers preserving and generalized strong cocommutativity preserving centralizers and we prove that R contains a nonzero central ideal if any one of the following conditions holds: (i) ( ) ( ), (ii) [ ( ) ( )] , (iii) [ ( ) ( )] [ ], (iv) ( ) ( ) , (v) ( ) ( ) , (vi) [ ( ) ( )] , (vii) ( ) ( ) ( ), (viii) ( ) ( ) for all .
In this paper we introduce the definition of Lie ideal on inverse semiring and we generalize some results of Herstein about Lie structure of an associative rings to inverse semirings.
Let R be commutative Ring , and let T be unitary left .In this paper ,WAPP-quasi prime submodules are introduced as new generalization of Weakly quasi prime submodules , where proper submodule C of an R-module T is called WAPP –quasi prime submodule of T, if whenever 0≠rstϵC, for r, s ϵR , t ϵT, implies that either r tϵ C +soc or s tϵC +soc .Many examples of characterizations and basic properties are given . Furthermore several characterizations of WAPP-quasi prime submodules in the class of multiplication modules are established.
In this notion we consider a generalization of the notion of a projective modules , defined using y-closed submodules . We show that for a module M = M1M2 . If M2 is M1 – y-closed projective , then for every y-closed submodule N of M with M = M1 + N , there exists a submodule M`of N such that M = M1M`.
In this paper, we prove that; Let M be a 2-torsion free semiprime which satisfies the condition for all and α, β . Consider that as an additive mapping such that holds for all and α , then T is a left and right centralizer.