Let be a commutative ring with identity and a fixed ideal of and be an unitary -module.We say that a proper submodule of is -semi prime submodule if with . In this paper, we investigate some properties of this class of submodules. Also, some characterizations of -semiprime submodules will be given, and we show that under some assumptions -semiprime submodules and semiprime submodules are coincided.
The purpose of this paper is to extend some results concerning generalized derivations to generalized semiderivations of 3-prime near rings.
In this paper the centralizing and commuting concerning skew left -derivations and skew left -derivations associated with antiautomorphism on prime and semiprime rings were studied and the commutativity of Lie ideal under certain conditions were proved.
In this paper, we study the class of prime semimodules and the related concepts, such as the class of semimodules, the class of Dedekind semidomains, the class of prime semimodules which is invariant subsemimodules of its injective hull, and the compressible semimodules. In order to make the work as complete as possible, we stated, and sometimes proved, some known results related to the above concepts.
This paper is devoted to introduce weak and strong forms of fibrewise fuzzy ω-topological spaces, namely the fibrewise fuzzy -ω-topological spaces, weakly fibrewise fuzzy -ω-topological spaces and strongly fibrewise fuzzy -ω- topological spaces. Also, Several characterizations and properties of this class are also given as well. Finally, we focused on studying the relationship between weakly fibrewise fuzzy -ω-topological spaces and strongly fibrewise fuzzy -ω-topological spaces.
Let be a metric space and be a continuous map. The notion of the -average shadowing property ( ASP ) for a continuous map on –space is introduced and the relation between the ASP and average shadowing property(ASP)is investigated. We show that if has ASP, then has ASP for every . We prove that if a map be pseudo-equivariant with dense set of periodic points and has the ASP, then is weakly mixing. We also show that if is a expansive pseudo-equivariant homeomorphism that has the ASP and is topologically mixing, then has a -specification. We obtained that the identity map on has the ASP if and only if th
... Show MoreThe structure, optical, and electrical properties of SnSe and its application as photovoltaic device has been reported widely. The reasons for interest in SnSe due to the magnificent optoelectronic properties with other encouraging properties. The most applications that in this area are PV devices and batteries. In this study tin selenide structure, optical properties and surface morphology were investigated and studies. Thin-film of SnSe were deposit on p-Si substrates to establish a junction as solar cells. Different annealing temperatures (as prepared, 125,200, 275) °C effects on SnSe thin films were investigated. The structure properties of SnSe was studied through X-ray diffraction, and the results appears the increasing of the peaks
... Show MoreCadmium sulfide photodetector was fabricated. The CdS nano
powder has been prepared by a chemical method and deposited as a
thin film on both silicon and porous p- type silicon substrates by spin
coating technique. Structural, morphological, optical and electrical
properties of the prepared CdS nano powder are studied. The X-ray
analysis shows that the obtained powder is CdS with predominantly
hexagonal phase. The Hall measurements show that the nano powder
is n-type with carrier concentration of about (-5.4×1010) cm-3. The
response time of fabricated detector was measured by illuminating
the sample with visible radiation and its value was 5.25 msec. The
specific detectivity of the fabricated det
In this paper, we proved that if R is a prime ring, U be a nonzero Lie ideal of R , d be a nonzero (?,?)-derivation of R. Then if Ua?Z(R) (or aU?Z(R)) for a?R, then either or U is commutative Also, we assumed that Uis a ring to prove that: (i) If Ua?Z(R) (or aU?Z(R)) for a?R, then either a=0 or U is commutative. (ii) If ad(U)=0 (or d(U)a=0) for a?R, then either a=0 or U is commutative. (iii) If d is a homomorphism on U such that ad(U) ?Z(R)(or d(U)a?Z(R), then a=0 or U is commutative.
Let R be a 2-torision free prime ring and ?, ?? Aut(R). Furthermore, G: R×R?R is a symmetric generalized (?, ?)-Biderivation associated with a nonzero (?, ?)-Biderivation D. In this paper some certain identities are presented satisfying by the traces of G and D on an ideal of R which forces R to be commutative
It was known that every left (?,?) -derivation is a Jordan left (?,?) – derivation on ?-prime rings but the converse need not be true. In this paper we give conditions to the converse to be true.