In this paper, we study the class of prime semimodules and the related concepts, such as the class of semimodules, the class of Dedekind semidomains, the class of prime semimodules which is invariant subsemimodules of its injective hull, and the compressible semimodules. In order to make the work as complete as possible, we stated, and sometimes proved, some known results related to the above concepts.
The concept of semi-essential semimodule has been studied by many researchers.
In this paper, we will develop these results by setting appropriate conditions, and defining new properties, relating to our concept, for example (fully prime semimodule, fully essential semimodule and semi-complement subsemimodule) such that: if for each subsemimodule of -semimodule is prime, then is fully prime. If every semi-essential subsemimodule of -semimodule is essential then is fully essential. Finally, a prime subsemimodule of is called semi-relative intersection complement (briefly, semi-complement) of subsemimodule in , if , and whenever with is a prime subsemimodule in , , then . Furthermore, some res
... Show MoreIn this paper we study the notion of preradical on some subcategories of the category of semimodules and homomorphisms of semimodules.
Since some of the known preradicals on modules fail to satisfy the conditions of preradicals, if the category of modules was extended to semimodules, it is necessary to investigate some subcategories of semimodules, like the category of subtractive semimodules with homomorphisms and the category of subtractive semimodules with ҽҟ-regular homomorphisms.
In modules there is a relation between supplemented and π-projective semimodules. This relation was introduced, explained and investigated by many authors. This research will firstly introduce a concept of "supplement subsemimodule" analogues to the case in modules: a subsemimodule Y of a semimodule W is said to be supplement of a subsemimodule X if it is minimal with the property X+Y=W. A subsemimodule Y is called a supplement subsemimodule if it is a supplement of some subsemimodule of W. Then, the concept of supplemented semimodule will be defined as follows: an S-semimodule W is said to be supplemented if every subsemimodule of W is a supplemen
... Show MoreIn this work, injective semimodule has been generalized to almost -injective semimodule. The aim of this research is to study the basic properties of the concept almost- injective semimodules. The semimodule is called almost -injective semimodule if, for each subsemimodule A of and each homomorphism : A , either there exists a homomorphism such that = . Or there exists a homomorphism : Y such that = , where Y is nonzero direct summand of , and is the projection map. A semimodule is almost injective semimodule if it is almost injective relative to all semimodules. Every injective semimodule is almost injective semimodule, if is almost –
... Show MoreThe aim of this paper is to introduce the concept of Dedekind semimodules and study the related concepts, such as the class of semimodules, and Dedekind multiplication semimodules . And thus study the concept of the embedding of a semimodule in another semimodule.
Let A, and N are a semiring ,and a left A- semimodule, respectively. In this work we will discuss two cases:
- The direct summand of π-projective semi module is π-projective, while the direct sum of two π-projective semimodules in general is not π-projective . The details of the proof will be given.
- We will give a condition under which the direct sum of two π-projective semi modules is π-projective, as well as we also set conditions under which π-projective semi modules are projective.
Let R be a Г-ring, and σ, τ be two automorphisms of R. An additive mapping d from a Γ-ring R into itself is called a (σ,τ)-derivation on R if d(aαb) = d(a)α σ(b) + τ(a)αd(b), holds for all a,b ∈R and α∈Γ. d is called strong commutativity preserving (SCP) on R if [d(a), d(b)]α = [a,b]α(σ,τ) holds for all a,b∈R and α∈Γ. In this paper, we investigate the commutativity of R by the strong commutativity preserving (σ,τ)-derivation d satisfied some properties, when R is prime and semi prime Г-ring.
The paper starts with the main properties of the class of soft somewhere dense open functions and follows their connections with other types of soft open functions. Then preimages of soft sets with Baire property and images of soft Baire spaces under certain classes of soft functions are discussed. Some examples are presented that support the obtained results. Further properties of somewhere dense open functions related to different types of soft functions are found under some soft topological properties.
The basis of this paper is to study the concept of almost projective semimodules as a generalization of projective semimodules. Some of its characteristics have been discussed, as well as some results have been generalized from projective semimodules.
Let S be a prime inverse semiring with center Z(S). The aim of this research is to prove some results on the prime inverse semiring with (α, β) – derivation that acts as a homomorphism or as an anti- homomorphism, where α, β are automorphisms on S.