Always MRI and CT Medical images are noisy so that preprocessing is necessary for enhance these images to assist clinicians and make accurate diagnosis. Firstly, in the proposed method uses two denoising filters (Median and Slantlet) are applied to images in parallel and the best enhanced image gained from both filters is voted by use PSNR and MSE as image quality measurements. Next, extraction of brain tumor from cleaned images is done by segmentation method based on k-mean. The result shows that the proposed method is giving an optimal solution due to denoising method which is based on multiple filter types to obtain best clear images and that is leads to make the extraction of tumor more precision best.
In this paper, an efficient image segmentation scheme is proposed of boundary based & geometric region features as an alternative way of utilizing statistical base only. The test results vary according to partitioning control parameters values and image details or characteristics, with preserving the segmented image edges.
Pseudomonas aeruginosa is common gram negative rod – shaped bacterium, a species of considerable medical importance, P. aeruginosa is prototypical "multi drug resistant (MDR) Pathogen" that is recognised for its ubiquity, its intrinsically advanced antibiotic resistance mechanisms, and its associatation with serious illnesses – especially nosocomial infection such as ventilator – associated pneumonia and various sepsis syndromes. This study was conducted from March 2014 to July 2014, the patients were males and females. Total samples of 613 patients, selected from burns wards and general surgery wards, the samples were sending to teaching laboratories from the same hospital. The present study
... Show Morethe study considers the optical classification of cervical nodal lymph cells and is based on research into the development of a Computer Aid Diagnosis (CAD) to detect the malignancy cases of diseases. We consider 2 sets of features one of them is the statistical features; included Mode, Median, Mean, Standard Deviation and Maximum Probability Density and the second set are the features that consist of Euclidian geometrical features like the Object Perimeter, Area and Infill Coefficient. The segmentation method is based on following up the cell and its background regions as ranges in the minimum-maximum of pixel values. The decision making approach is based on applying of Minimum Dista
In this work we present a technique to extract the heart contours from noisy echocardiograph images. Our technique is based on improving the image before applying contours detection to reduce heavy noise and get better image quality. To perform that, we combine many pre-processing techniques (filtering, morphological operations, and contrast adjustment) to avoid unclear edges and enhance low contrast of echocardiograph images, after implementing these techniques we can get legible detection for heart boundaries and valves movement by traditional edge detection methods.
In this paper a new fusion method is proposed to fuse multiple satellite images that are acquired through different electromagnetic spectrum ranges to produce a single gray scale image. The proposed method based on desecrate wavelet transform using pyramid and packet bases, the fusion process preformed using two different fusion rules, where the low frequency part is remapped through the use of PCA analysis basing on covariance matrix and correlation matrix, and the high frequency part is fused using different fusion rules (adding, selecting the higher, replacement), then the restored image is obtained by applying the inverse desecrate wavelet transform. The experimental results show the validity of the proposed fusion method to fuse suc
... Show MoreDiabetic retinopathy is an eye disease in diabetic patients due to damage to the small blood vessels in the retina due to high and low blood sugar levels. Accurate detection and classification of Diabetic Retinopathy is an important task in computer-aided diagnosis, especially when planning for diabetic retinopathy surgery. Therefore, this study aims to design an automated model based on deep learning, which helps ophthalmologists detect and classify diabetic retinopathy severity through fundus images. In this work, a deep convolutional neural network (CNN) with transfer learning and fine tunes has been proposed by using pre-trained networks known as Residual Network-50 (ResNet-50). The overall framework of the proposed
... Show MoreBackground: The long term survival of dental implants is evaluated by the amount of crestal bone loss around the implants. Some initial loss of bone around dental implants is generally expected. There is reason to believe that reflecting a mucoperiosteal flap promotes crestal bone loss in the initial phase after an implant has been inserted. The surgical placement of a dental implant fixture is constantly changing and in recent years, there has been some interest in developing techniques that minimize the invasive nature of the procedure, with flapless implant surgery being advocated. The purpose of this study was to compare the radiographic level of the peri- implant bone after implant placement between traditional flapped surgery and f
... Show MoreA new de-blurring technique was proposed in order to reduced or remove the blur in the images. The proposed filter was designed from the Lagrange interpolation calculation with adjusted by fuzzy rules and supported by wavelet decomposing technique. The proposed Wavelet Lagrange Fuzzy filter gives good results for fully and partially blurring region in images.