Preferred Language
Articles
/
iRf1UZEBVTCNdQwCl5So
A New Face Swap Detection Technique for Digital Images
...Show More Authors

Scopus
View Publication
Publication Date
Sat Aug 01 2015
Journal Name
International Journal Of Advanced Research In Computer Science And Software Engineering
Partial Encryption for Colored Images Based on Face Detection
...Show More Authors

Publication Date
Thu May 30 2024
Journal Name
Iraqi Journal Of Science
A Review Study on Forgery and Tamper Detection Techniques in Digital Images
...Show More Authors

Digital tampering identification, which detects picture modification, is a significant area of image analysis studies. This area has grown with time with exceptional precision employing machine learning and deep learning-based strategies during the last five years. Synthesis and reinforcement-based learning techniques must now evolve to keep with the research. However, before doing any experimentation, a scientist must first comprehend the current state of the art in that domain. Diverse paths, associated outcomes, and analysis lay the groundwork for successful experimentation and superior results. Before starting with experiments, universal image forensics approaches must be thoroughly researched. As a result, this review of variou

... Show More
View Publication
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Increasing validation accuracy of a face mask detection by new deep learning model-based classification
...Show More Authors

During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve

... Show More
View Publication
Scopus (4)
Crossref (4)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science (ijeecs)
Increasing validation accuracy of a face mask detection by new deep learning model-based classification
...Show More Authors

During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve

... Show More
Crossref (4)
Crossref
Publication Date
Tue Oct 01 2019
Journal Name
2019 Ieee 9th International Conference On System Engineering And Technology (icset)
A Digital Signature System Based on Real Time Face Recognition
...Show More Authors

This study proposed a biometric-based digital signature scheme proposed for facial recognition. The scheme is designed and built to verify the person’s identity during a registration process and retrieve their public and private keys stored in the database. The RSA algorithm has been used as asymmetric encryption method to encrypt hashes generated for digital documents. It uses the hash function (SHA-256) to generate digital signatures. In this study, local binary patterns histograms (LBPH) were used for facial recognition. The facial recognition method was evaluated on ORL faces retrieved from the database of Cambridge University. From the analysis, the LBPH algorithm achieved 97.5% accuracy; the real-time testing was done on thirty subj

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Aug 31 2021
Journal Name
International Journal Of Nonlinear Analysis And Applications
Face mask detection methods and techniques: A review
...Show More Authors

Corona virus sickness has become a big public health issue in 2019. Because of its contact-transparent characteristics, it is rapidly spreading. The use of a face mask is among the most efficient methods for preventing the transmission of the Covid-19 virus. Wearing the face mask alone can cut the chance of catching the virus by over 70\%. Consequently, World Health Organization (WHO) advised wearing masks in crowded places as precautionary measures. Because of the incorrect use of facial masks, illnesses have spread rapidly in some locations. To solve this challenge, we needed a reliable mask monitoring system. Numerous government entities are attempting to make wearing a face mask mandatory; this process can be facilitated by using face m

... Show More
View Publication
Publication Date
Sat Mar 01 2008
Journal Name
Iraqi Journal Of Physics
Adaptive Smoothing Technique for Remotely Sensed Images Enhancement
...Show More Authors

Spatial and frequency domain techniques have been adopted in this search. mean
value filter, median filter, gaussian filter. And adaptive technique consists of
duplicated two filters (median and gaussian) to enhance the noisy image. Different
block size of the filter as well as the sholding value have been tried to perform the
enhancement process.

View Publication Preview PDF
Publication Date
Thu Jan 01 2015
Journal Name
Journal Of Al-mansoor College
An Improvement to Face Detection Algorithm for Non-Frontal Faces
...Show More Authors

Publication Date
Sun Mar 01 2015
Journal Name
International Journal Of Computer Science And Mobile Computing
Single Face Detection on Skin Color and Edge Detection
...Show More Authors

Publication Date
Sat Aug 01 2015
Journal Name
Modern Applied Science
A New Method for Detecting Cerebral Tissues Abnormality in Magnetic Resonance Images
...Show More Authors

We propose a new method for detecting the abnormality in cerebral tissues present within Magnetic Resonance Images (MRI). Present classifier is comprised of cerebral tissue extraction, image division into angular and distance span vectors, acquirement of four features for each portion and classification to ascertain the abnormality location. The threshold value and region of interest are discerned using operator input and Otsu algorithm. Novel brain slices image division is introduced via angular and distance span vectors of sizes 24˚ with 15 pixels. Rotation invariance of the angular span vector is determined. An automatic image categorization into normal and abnormal brain tissues is performed using Support Vector Machine (SVM). St

... Show More