Preferred Language
Articles
/
ijs-1044
Medical Image Enhancement to Extract Brain Tumors from CT and MRI images
...Show More Authors

     Always MRI and CT Medical images are noisy so that preprocessing is necessary for enhance these images to assist clinicians and make accurate diagnosis. Firstly, in the proposed method uses two denoising filters (Median and Slantlet) are applied to images in parallel and the best enhanced image gained from both filters is voted by use PSNR and MSE as image quality measurements. Next, extraction of brain tumor from cleaned images is done by segmentation method based on k-mean.  The result shows that the proposed method is giving an optimal solution due to denoising method which is based on multiple filter types to obtain best clear images and that is leads to make the extraction of tumor more precision best.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Advances In Computational Intelligence And Robotics
Groupwise Non-Rigid Image Alignment Using Few Parameters: Registration of Facial and Medical Images
...Show More Authors

Groupwise non-rigid image alignment is a difficult non-linear optimization problem involving many parameters and often large datasets. Previous methods have explored various metrics and optimization strategies. Good results have been previously achieved with simple metrics, requiring complex optimization, often with many unintuitive parameters that require careful tuning for each dataset. In this chapter, the problem is restructured to use a simpler, iterative optimization algorithm, with very few free parameters. The warps are refined using an iterative Levenberg-Marquardt minimization to the mean, based on updating the locations of a small number of points and incorporating a stiffness constraint. This optimization approach is eff

... Show More
View Publication
Publication Date
Thu Jun 30 2016
Journal Name
Al-kindy College Medical Journal
Secondary skull tumors: Prevalence, MRI findings as a diagnostic tool, and treatment
...Show More Authors

Background: Skull secondary tumors are malignant bone tumors which are increasing in incidence.Objective: The objectives of this study were to present clinical features , asses the outcome of patients with secondary skull tumors ,characterize the MRI features, locations, and extent of secondary skull tumors to determine the frequency of the symptomatic disease.Type of the study: This is a prospective study.Methods: This is a prospective study from February 2000 to February 2008. The patients were selected from five neurosurgical centers and one oncology hospital in Baghdad/Iraq. The inclusion criteria were MRI study of the head(either as an initial radiological study or following head CT scan when secondary brain tumor is suspected , vis

... Show More
View Publication Preview PDF
Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering
Classification of COVID-19 from CT chest images using Convolutional Wavelet Neural Network
...Show More Authors

<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol

... Show More
View Publication Preview PDF
Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Classification of COVID-19 from CT chest images using Convolutional Wavelet Neural Network
...Show More Authors

<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Deep Learning-Based Segmentation and Classification Techniques for Brain Tumor MRI: A Review
...Show More Authors

Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Wed Dec 30 2020
Journal Name
Iraqi Journal Of Science
Adopting Image Integration Techniques to Simulate Satellite Images
...Show More Authors

Mathematical integration techniques rely on mathematical relationships such as addition, subtraction, division, and subtraction to merge images with different resolutions to achieve the best effect of the merger. In this study, a simulation is adopted to correct the geometric and radiometric distortion of satellite images based on mathematical integration techniques, including Brovey Transform (BT), Color Normalization Transform (CNT), and Multiplicative Model (MM). Also, interpolation methods, namely the nearest neighborhood, Bi-linear, and Bi-cubic were adapted to the images captured by an optical camera. The evaluation of images resulting from the integration process was performed using several types of measures; the first type depend

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Mon Feb 22 2021
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
MRI images series segmentation using the geodesic deformable model
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sat Jan 02 2010
Journal Name
Journal Of Al-nahrain University
HIDDEN FEATURES DETECTION USING HISTOGRAM MODIFICATION IN MRI IMAGES
...Show More Authors

Magnetic Resonance Imaging (MRI) uses magnetization and radio waves, rather than x-rays to make very detailed, cross- sectional pictures of the brain. In this work we are going to explain some procedures belongs contrast and brightness improvement which is very important in the improvement the image quality such as the manipulation with the image histogram. Its has been explained in this worked the histogram shrink i.e. reducing the size of the gray level gives a dim low contrast picture is produced, where, the histogram stretching of the gray level was distributed on a wide scale but there is no increase in the number of pixels in the bright region. The histogram equalization has also been discuss together with its effects of the improveme

... Show More
Publication Date
Wed Apr 02 2014
Journal Name
Journal Of Theoretical And Applied Information Technology
TUMOR BRAIN DETECTION THROUGH MR IMAGES: A REVIEW OF LITERATURE
...Show More Authors

Today’s modern medical imaging research faces the challenge of detecting brain tumor through Magnetic Resonance Images (MRI). Normally, to produce images of soft tissue of human body, MRI images are used by experts. It is used for analysis of human organs to replace surgery. For brain tumor detection, image segmentation is required. For this purpose, the brain is partitioned into two distinct regions. This is considered to be one of the most important but difficult part of the process of detecting brain tumor. Hence, it is highly necessary that segmentation of the MRI images must be done accurately before asking the computer to do the exact diagnosis. Earlier, a variety of algorithms were developed for segmentation of MRI images by usin

... Show More
Scopus (45)
Scopus
Publication Date
Sun Jan 19 2025
Journal Name
Iraqi Journal Of Science
EXTRACELLULAR SUPEROXIDE DISMUTASE CHANGES IN PATIENTS WITH DIFFERENT BRAIN TUMORS
...Show More Authors

The Specific activity of extracellular superoxide dismutase (EC-SOD) was measured in healthy persons and in patients with benign and malignant brain tumors. The results show decrease of the EC-SOD specific activity in sera of patients with benign and malignant brain tumors in comparison to that of control group.This study concentrated on studying the changes that occur in sera EC-SOD activity of patients with benign and malignant brain tumors, in comparison to that of normal individuals. The result also revealed that this isoenzyme is present in many different molecular weights forms (as judged by polyacrylamide gel electrophoresis), some of these with no enzymatic activity. Conversion among these forms occurs in the malignant sera

View Publication Preview PDF