Preferred Language
Articles
/
ijp-337
Quadrupole moment of 14B exotic nucleus
...Show More Authors

    The quadrupole moment of 14B exotic nucleus has been calculated using configuration mixing shell model with limiting number of orbital's in the model space. The core- polarization effects, are included through a microscopic theory which considers a particle-hole excitations from the core and the model space orbits into the higher orbits with 6ħω excitations using M3Y interaction. The simple harmonic oscillator potential is used to generate the single particle wave functions. Large basis no-core shell model with (0+2)ћω truncation is used for 14B nucleus. The effective charges for the protons and neutrons were calculated successfully and the theoretical quadrupole moment was compared with the experimental data, which was found to be in a good agreement.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Feb 22 2023
Journal Name
Iraqi Journal Of Science
The Effect of Short Range Correlation on The Nuclear Charge Density Distribution, Elastic and Inelastic Electron Scattering Coulomb Form Factors of 18O Nucleus
...Show More Authors

The effect of short range correlations on the inelastic longitudinal Coulomb form
factors for the lowest four excited 2+ states in 18O is analyzed. This effect (which
depends on the correlation parameter β) is inserted into the ground state charge
density distribution through the Jastrow type correlation function. The single particle
harmonic oscillator wave function is used with an oscillator size parameter b. The
parameters β and b are, considered as free parameters, adjusted for each excited state
separately so as to reproduce the experimental root mean square charge radius of
18O. The model space of 18O does not contribute to the transition charge density. As
a result, the inelastic Coulomb form factor of 18

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 01 2009
Journal Name
Iraqi Journal Of Physics
The Calculation of the Charge Density Distributions and the Longitudinal Form Factors of 10 B Nucleus by Using the Occupation Numbers of the States
...Show More Authors

The charge density distributions of 10 B nucleus are calculated using the
harmonic oscillator wave functions. Elastic and inelastic electron scattering
longitudinal form factors have been calculated for the similar parity states of 10B
nucleus where a core of 4He is assumed and the remaining particles are
distributed over 3/ 2 1p and 1/ 2 1p orbits which form the model space.
Core-polarization effects are taken into account. Core-polarization effects are
calculated by using Tassie model and gives good agreement with the measured
data.

View Publication Preview PDF
Publication Date
Fri Dec 31 2010
Journal Name
Journal Of Legal Sciences
The moment of concluding the contract according to the United Nations Convention on Contracts for the International Sale of Goods (1980) (A comparative study with some Arab and foreign legislations)
...Show More Authors

There are two ways that the contract might be formed with (contracting between persons who are attended and contracting between absence persons).the need for determining the precise moment of the contract , is so clear because there is a specify period separate between the declaration of acceptance and the knowledge with it .and it is clear from the four theories known for jurisprudence (theory of the declaration of the acceptance, theory of exporting the acceptance , theory of the arrival of the acceptance , theory of the knowledge with the acceptance ) . It is difficult to promote one theory on another one if we look at each one and the justification of its supporters and what the opponents of each theory expose. Legal background and diff

... Show More
View Publication
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
A Comparison Between the Theoretical Cross Section Based on the Partial Level Density Formulae Calculated by the Exciton Model with the Experimental Data for (_79^197)Au nucleus
...Show More Authors

In this paper, the theoretical cross section in pre-equilibrium nuclear reaction has been studied for the reaction  at energy 22.4 MeV. Ericson’s formula of partial level density PLD and their corrections (William’s correction and spin correction) have been substituted  in the theoretical cross section and compared with the experimental data for  nucleus. It has been found that the theoretical cross section with one-component PLD from Ericson’s formula when  doesn’t agree with the experimental value and when . There is little agreement only at the high value of energy range with  the experimental cross section. The theoretical cross section that depends on the one-component William's formula and on-component corrected to spi

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Iraqi Journal Of Physics
Study of the nuclear structure of halo nuclei 23O and 24F using the two-body model
...Show More Authors

The nuclear structure included the matter, proton and neutron densities of the ground state, the nuclear root-mean-square (rms) radii and elastic form factors of one neutron 23O and 24F halo nuclei have been studied by the two body model of  within the harmonic oscillator (HO) and Woods-Saxon (WS) radial wave functions. The calculated results show that the two body model within the HO and WS radial wave functions succeed in reproducing neutron halo in these exotic nuclei. Moreover, the Glauber model at high energy has been used to calculated the rms radii and reaction cross section of these nuclei.

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Iraqi Journal Of Physics
Study of matter density distributions, elastic charge form factors and size radii for halo 11Be, 19C and 11Li nuclei
...Show More Authors

In this work, the calculation of matter density distributions, elastic charge form factors and size radii for halo 11Be, 19C and 11Li nuclei are calculated. Each nuclide under study are divided into two parts; one for core part and the second for halo part. The core part are studied using harmonic-oscillator radial wave functions, while the halo part are studied using the radial wave functions of Woods-Saxon potential. A very good agreement are obtained with experimental data for matter density distributions and available size radii. Besides, the quadrupole moment for 11Li are generated.

View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Tue Jan 08 2019
Journal Name
Iraqi Journal Of Physics
Charge density distributions and electron scattering form factors of 19F, 27Al and 25Mg nuclei
...Show More Authors

An effective two-body density operator for point nucleon system folded with two-body correlation functions, which take account of the effect of the strong short range repulsion and the strong tensor force in the nucleon-nucleon forces, is produced and used to derive an explicit form for ground state two-body charge density distributions (2BCDD's) and elastic electron scattering form factors F (q) for 19F, 27Al and 25Mg nuclei. It is found that the inclusion of the two-body short range correlations (SRC) has the feature of reducing the central part of the 2BCDD's significantly and increasing the tail part of them slightly, i.e. it tends to increase the probability of transferring the protons from the central region of the nucleus towards

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Baghdad Science Journal
Discussing Fuzzy Reliability Estimators of Function of Mixed Probability Distribution By Simulation
...Show More Authors

This paper deals  with constructing mixed probability distribution  from exponential with scale parameter (β) and also Gamma distribution with (2,β), and the mixed proportions are (  .first of all, the probability density function (p.d.f) and also cumulative distribution function (c.d.f) and also the reliability function are obtained. The parameters of mixed distribution, ( ,β)  are estimated by three different methods, which are  maximum likelihood, and  Moments method,as well proposed method (Differential Least Square Method)(DLSM).The comparison is done using simulation procedure, and all the results are explained in tables.

View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Fri Sep 01 2017
Journal Name
Al-nahrain Journal Of Science
Study of Charge Density Distributions and Elastic Charge Form Factors for 40Ca and 48Ca
...Show More Authors

The ground charge density distributions (CDD), elastic charge form factors and proton, charge, neutron, and matter root mean square (rms) radii for stable 40Ca and 48Ca have been calculated using single-particle radial wave functions of Woods-Saxon (WS) and harmonic-oscillator (HO) potentials. Different central potential depths are used for each subshell which is adjusted so as to reproduce the experimental single-nucleon binding energies. An excellent agreement between the calculated rms charge radii and experimental data are found for both nuclei using WS and HO potentials. The calculated proton rms radii for 40Ca are found to be in good agreement with experiment data using both WS and HO potentials while the results for 48Ca showed an ov

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 03 2019
Journal Name
Iraqi Journal Of Physics
Study of charge density distributions, elastic charge form factors and root-mean square radii for 4He, 12C and 16O nuclei using Woods- Saxon and harmonic-oscillator potentials
...Show More Authors

The nuclear charge density distributions, form factors and
corresponding proton, charge, neutron, and matter root mean square
radii for stable 4He, 12C, and 16O nuclei have been calculated using
single-particle radial wave functions of Woods-Saxon potential and
harmonic-oscillator potential for comparison. The calculations for the
ground charge density distributions using the Woods-Saxon potential
show good agreement with experimental data for 4He nucleus while
the results for 12C and 16O nuclei are better in harmonic-oscillator
potential. The calculated elastic charge form factors in Woods-Saxon
potential are better than the results of harmonic-oscillator potential.
Finally, the calculated root mean square

... Show More
View Publication Preview PDF
Crossref (4)
Crossref