The quadrupole moment of 14B exotic nucleus has been calculated using configuration mixing shell model with limiting number of orbital's in the model space. The core- polarization effects, are included through a microscopic theory which considers a particle-hole excitations from the core and the model space orbits into the higher orbits with 6ħω excitations using M3Y interaction. The simple harmonic oscillator potential is used to generate the single particle wave functions. Large basis no-core shell model with (0+2)ћω truncation is used for 14B nucleus. The effective charges for the protons and neutrons were calculated successfully and the theoretical quadrupole moment was compared with the experimental data, which was found to be in a good agreement. |
The ground state proton, neutron, and matter density distributions and corresponding root-mean-square radii (rms) of the unstable neutron-rich
22C exotic nucleus are investigated by two-frequency shell model (TFSM) approach. The single-particle wave functions of harmonic-oscillator (HO)
potential are used with two oscillator parameters bcore and bhalo. According to this model, the core nucleons of 20C are assumed to move in the model
space of spsdpf. Shell model calculations are performed with (0+2)hw truncations using Warburton-Brown psd-shell (WBP) interaction. The outer (halo) two neutrons in 22C are assumed to move in HASP (H. Hasper) model space (2s1/2, 1d3/2, 2p3/2, and 1f7/2 orbits) using the HASP interaction. The halo st
The reduced electric quadrupole transition strengths B(E2) from the first excited
2+ state to the ground 0+ state of some even-even Neon isotopes (18,20,22,24,26,28Ne)
have been calculated. All studied isotopes composed of 16O nucleus that is
considered as an inert core and the other valence particles considered to move over
the sd-shell model space within 1d5/2, 2s1/2 and 1d3/2 orbits.
The configuration mixing shell model with limiting number of orbitals in the
model space outside the inert core fail to reproduce the measured electric transition
strengths. Therefore, and for the purpose of enhancing the calculations, the
discarded space has been included through a microscopic theory which considers a
particle-
The longitudinal electron scattering form factors and the electric quadrupole moments are calculated for the states with Jπ T= 3+0 (ground state) and 1+ 0 (583keV excited state) of 22Na and Jπ T= 3+2 (ground state) of 26Na. Shell model calculations are based on USDA, USDB and Wildenthal interactions. The exact center of mass correction is included in Born approximation picture to generate the longitudinal form factors. The core polarization (CP) effect with the values of effective nucleon charges ep=1.35, en= 0.35, with Bohr Mottelson formula gave a good agreement with the measured electric quadrupole moments. The structure of th
... Show MoreMultipole mixing ratios for gamma transition populated in from reaction have been studied by least square fitting method also transition strength ] for pure gamma transitions have been calculated taking into account the mean life time for these levels .
Trimmed Linear moments (TL-moments) are natural generalization of L-moments that do not require the mean of the underlying distribution to exist. It is known that the sample TL-moments is unbiased estimators to corresponding population TL-moment. Since different choices for the amount of trimming give different values of the estimators it is important to choose the estimator that has minimum mean squares error than others. Therefore, we derive an optimal choice for the amount of trimming from known distributions based on the minimum errors between the estimators. Moreover, we study simulation-based approach to choose an optimal amount of trimming and maximum like hood method by computing the estimators and mean squares error for range of
... Show MoreDue to wind wave actions, ships impacts, high-speed vehicles and others resources of loading, structures such as high buildings rise bridge and electric transmission towers undergo significant coupled moment loads. In this study, the effect of increasing the value of coupled moment and increasing the rigidity of raft footing on the horizontal deflection by using 3-D finite element using ABAQUS program. The results showed that the increasing the coupled moment value leads to an increase in lateral deflection and increase in the rotational angle (α◦). The rotational angle increases from (0.014, 0.15 to 0.19) at coupled moment (120 kN.m), (0.29, 0.31 and 0.49) at coupled moment (240 kN.m) and (0.57, 0.63 and 1.03) at cou
... Show MoreIn this paper the proton, neutron and matter density distributions and the corresponding root mean square (rms) radii of the ground states and the elastic magnetic electron scattering form factors and the magnetic dipole moments have been calculated for exotic nucleus of potassium isotopes K (A= 42, 43, 45, 47) based on the shell model using effective W0 interaction. The single-particle wave functions of harmonic-oscillator (HO) potential are used with the oscillator parameters b. According to this interaction, the valence nucleons are asummed to move in the d3f7 model space. The elastic magnetic electron scattering of the exotic nuclei 42K (J?T= 2- 2), 43K(J?T=3/2+ 5/2), 45K (J?T= 3/2+ 7/2) and 47K (J?T= 1/2+ 9/2) investigated t
... Show MoreThis study dedicates to provide an information of shell model calculations, limited to fp-shell with an accuracy and applicability. The estimations depend on the evaluation of Hamiltoian’s eigenvalues, that’s compatible with positive parity of energy levels up to (10MeV) for most isotopes of Ca, and the Hamiltonian eigenvectors transition strength probability and inelastic electron-nucleus scattering. The Hamiltonian is effective in the regions where we have experimented. The known experimental data of the same were confirmed and proposed a new nuclear level for others.
The calculations are done with the help of OXBASH code. The results show good agreement with experimental energy states
... Show MoreThe ground state properties including the density distributions of the neutrons, protons and matter as well as the corresponding root mean square (rms) radii of proton-rich halo candidates 8B, 12N, 23Al and 27P have been studied by the single particle Bear– Hodgson (BH) wave functions with the two-body model of (core+p). It is found that the rms radii of these proton-rich nuclei are reproduced well by this model and the radial wave functions describe the long tail of the proton and matter density distributions. These results indicate that this model achieves a suitable description of the possible halo structure. The plane wave Born approximation (PWBA) has been used to compute the elastic charge form factors.
The ground state proton, neutron and matter densities and
corresponding root mean square radii of unstable proton-rich 17Ne
and 27P exotic nuclei are studied via the framework of the twofrequency
shell model. The single particle harmonic oscillator wave
functions are used in this model with two different oscillator size
parameters core b and halo , b the former for the core (inner) orbits
whereas the latter for the halo (outer) orbits. Shell model calculations
for core nucleons and for outer (halo) nucleons in exotic nuclei are
performed individually via the computer code OXBASH. Halo
structure of 17Ne and 27P nuclei is confirmed. It is found that the
structure of 17Ne and 27P nuclei have 2
5 / 2 (1d ) an