Preferred Language
Articles
/
joe-648
Finite Element Analysis of Raft Foundation under Coupled Moment

Due to wind wave actions, ships impacts, high-speed vehicles and others resources of loading, structures such as high buildings rise bridge and electric transmission towers undergo significant coupled moment loads. In this study, the effect of increasing the value of coupled moment and increasing the rigidity of raft footing on the horizontal deflection by using 3-D finite element using ABAQUS program. The results showed that the increasing the coupled moment value leads to an increase in lateral deflection and increase in the rotational angle (α◦). The rotational angle increases from (0.014, 0.15 to 0.19) at coupled moment (120 kN.m), (0.29, 0.31 and 0.49) at coupled moment (240 kN.m) and (0.57, 0.63 and 1.03) at coupled moment (480 kN.m) with decreasing the raft thickness from (1.5, 1.0 to 0.5m), respectively. The computed maximum lateral deflection decreases with increasing the rigidity of raft. The maximum deflection decreases from (40 to 3mm) at coupled moment 120 kN.m, (150 to 60mm) at coupled moment 240 kN.m and (210 to 118mm) at coupled moment 480 kN.m with increase raft thickness from (t = 0.5 to 1.5m) and the maximum reduction in maximum stress value and lateral deflection mobilized due to applied coupled moment is noticed when width to thickness of footing ratio is less than (w/t<12). The failure of the footing is noticed when the rotational angle is more than 4 (α > 4)

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 01 2020
Journal Name
Journal Of Engineering
Three-Dimensional Explicit Finite Element Simulation of Piled-Raft Foundation

This paper aims to validate a proposed finite element model to be adopted in predicting displacement and soil stresses of a piled-raft foundation. The proposed model adopts the solid element to simulate the raft, piles, and soil mass. An explicit integration scheme has been used to simulate nonlinear static aspects of the piled-raft foundation and to avoid the computational difficulties associated with the implicit finite element analysis.

The validation process is based on comparing the results of the proposed finite element model with those of a scaled-down experimental work achieved by other researchers. Centrifuge apparatus has been used in the experimental work to generate the required stresses to simulate t

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Mon Mar 23 2020
Journal Name
Journal Of Engineering
Effect of Embedment on Generated Bending Moment in Raft Foundation under Seismic Load

This research shows the experimental results of the bending moment in a flexible and rigid raft foundation rested on dense sandy soil with different embedded depth throughout 24 tests. A physical model of dimensions (200mm*200mm) and (320) mm in height was constructed with raft foundation of (10) mm thickness for flexible raft and (23) mm for rigid raft made of reinforced concrete. To imitate the seismic excitation shaking table skill was applied, the shaker was adjusted to three frequencies equal to (1Hz,2Hz, and 3Hz) and displacement magnitude of (13) mm, the foundation was located at four different embedment depths (0,0.25B = 50mm,0.5B = 100mm, and B = 200mm), where B is the raft width. Generally, the maximum bending

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Nov 02 2023
Journal Name
Journal Of Engineering
Numerical Study of Piled Raft Foundation in Non-Homogeneous Soil Using Finite Element Method

This paper analyzes a piled-raft foundation on non-homogeneous soils with variable layer depth percentages. The present work aims to perform a three-dimensional finite element analysis of a piled-raft foundation subjected to vertical load using the PLAXIS 3D software. Parametric analysis was carried out to determine the effect of soil type and initial layer thickness. The parametric study showed that increasing the relative density from 30 % to 80 % of the upper sand layer and the thickness of the first layer has led to an increase in the ultimate load and a decrease in the settlement of piled raft foundations for the cases of sand over weak soil.  In clay over weak soil, the ultimate load of the piled raft foundation w

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Dec 20 2021
Journal Name
Baghdad Science Journal
Numerical Analysis of Least-Squares Group Finite Element Method for Coupled Burgers' Problem

In this paper, a least squares group finite element method for solving coupled Burgers' problem in   2-D is presented. A fully discrete formulation of least squares finite element method is analyzed, the backward-Euler scheme for the time variable is considered, the discretization with respect to space variable is applied as biquadratic quadrangular elements with nine nodes for each element. The continuity, ellipticity, stability condition and error estimate of least squares group finite element method are proved.  The theoretical results  show that the error estimate of this method is . The numerical results are compared with the exact solution and other available literature when the convection-dominated case to illustrate the effic

... Show More
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Experimental and Numerical Analysis of Piled Raft Foundation with Different Length of Piles Under Static Loads

In order to understand the effect of (length of pile / diameter of pile) ratio on the load carrying capacity and settlement reduction behavior of piled raft resting on loose sand, laboratory model tests were conducted on small-scale models. The parameters studied were the effect of pile length and the number of piles. The load settlement behavior obtained from the tests has been validated by using 3-D finite element in ABAQUS program, was adopted to understand the load carrying response of piled raft and settlement reduction. The results of experimental work show that the increase in (Lp/dp) ratio led to increase in load carrying capacity by piled raft from (19.75 to 29.35%), (14.18 to 28.87%) and (0 to 16.49%) , the maximum load carried

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Thu May 02 2013
Journal Name
Journal Of Engineering
Experimental and numerical analysis of piled raft foundation with different length of piles under static loads

In order to understand the effect of (length of pile / diameter of pile) ratio on the load carrying capacity and settlement reduction behavior of piled raft resting on loose sand, laboratory model tests were conducted on small-scale models. The parameters studied were the effect of pile length and the number of piles. The load settlement behavior obtained from the tests has been validated by using 3-D finite element in ABAQUS program, was adopted to understand the load carrying response of piled raft and settlement reduction. The results of experimental work show that the increase in (Lp/dp) ratio led to increase in load carrying capacity by piled raft from (19.75 to 29.35%), (14.18 to 28.87%) and (0 to 16.49%) , the maximum load carr

... Show More
Publication Date
Tue Feb 01 2022
Journal Name
Journal Of Engineering
Nonlinear Finite Element Analysis of Fiber Reinforced Concrete Pavement under Dynamic Loading

The analysis of rigid pavements is a complex mission for many reasons. First, the loading conditions include the repetition of parts of the applied loads (cyclic loads), which produce fatigue in the pavement materials. Additionally, the climatic conditions reveal an important role in the performance of the pavement since the expansion or contraction induced by temperature differences may significantly change the supporting conditions of the pavement. There is an extra difficulty because the pavement structure is made of completely different materials, such as concrete, steel, and soil, with problems related to their interfaces like contact or friction. Because of the problem's difficulty, the finite element simulation is

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Thu Aug 31 2017
Journal Name
Journal Of Engineering
Finite Element Analysis of UHPC Corbels

   Finite element method is the most widely numerical technique used in engineering field. Through the study of behavior of concrete material properties, various concrete constitutive laws  and failure criteria have been developed to model the behavior of concrete. A feature of the Finite Element program (ATENA) is used in this study to model the behavior of UHPC corbel under concentrated load only. The Finite Element (FE) model is followed by verification against experimental results. Some variable effects on the shear capacity of the UHPC corbels are also demonstrated in a parametric study. A proposed design equation of shear strength of UHPC corbel was presented and checked with numerical results.
 

View Publication Preview PDF
Publication Date
Thu Aug 01 2019
Journal Name
Iop Conference Series: Materials Science And Engineering
Effect of Embedment Depth on Raft Foundation Settlement Under Seismic Load
Abstract<p>Dynamic loads highly influence soil properties and may cause real damage to structures and buildings. This article reports the experimental results from 24 tests to study the settlement of flexible and rigid raft foundation with different embedment depth rested on dense sandy soil. A small scale building model of dimension 200*200 mm and 320 mm in height was performed with reinforced concrete raft foundation of 10 mm thickness for flexible raft and 23 mm for rigid raft, The shaking table technique was used to simulate the seismic effect, the shaker was sat to give three different excitation frequencies 1,2,and3 Hz and displacement amplitude equal to 13 mm, the foundation was placed at</p> ... Show More
Scopus Crossref
View Publication
Publication Date
Wed Jul 04 2018
Journal Name
Civil Engineering Journal
Finite Element Analysis of Concrete Beam under Flexural Stresses Using Meso-Scale Model

Two dimensional meso-scale concrete modeling was used in finite element analysis of plain concrete beam subjected to bending. The plane stress 4-noded quadrilateral elements were utilized to model coarse aggregate, cement mortar. The effect of aggregate fraction distribution, and pores percent of the total area – resulting from air voids entrapped in concrete during placement on the behavior of plain concrete beam in flexural was detected. Aggregate size fractions were randomly distributed across the profile area of the beam. Extended Finite Element Method (XFEM) was employed to treat the discontinuities problems result from double phases of concrete and cracking that faced during the finite element analysis of concrete beam. Crac

... Show More
Crossref (4)
Clarivate Crossref